Program: Diploma in Mechanical Engineering/Tool and Die Engineering / Manufacturing Technology		
Course Code : 6021A Course Title: Mechatronics		
Semester : 6/6/6	Credits: 5	
Course Category: Program Elective/ Program Elective		
Periods per week: 5 (L:4 T:1 P:0) Periods per semester: 75		

Course Objectives:

- To provide knowledge about mechatronics in manufacturing systems and industries.
- To identify various mechanical, hydraulic, pneumatic, and electrical actuation systems, as well as various types of sensors and their applications.
- To gain an understanding of digital communications concepts and to create PLC programmes.
- To Familiarize with the principles, characteristics, and applications of robotics and automation systems.

Course Prerequisites:

Topic	Course code	Course name	Semester
Knowledge of basic Fluid mechanics & Fluid power.		Fluid mechanics & Fluid power	3
Knowledge of basic Electrical & Electronics		Electrical & Electronics Engineering	3

Course Outcomes:

On completion of the course, the students will be able to:

COn	Description	Duration (Hours)	Cognitive Level
CO1	Describe various types of sensors and their applications.	17	Understanding
CO2	Explain the various mechanical, hydraulic, pneumatic and electrical actuation systems.	21	Understanding

CO 3	Explain the basic PLC architecture and PLC programming concepts.	19	Applying
CO4	Describe automation & robotics systems with specific emphasis on robotic design factors	16	Applying
	Series Test	2	

CO – PO Mapping:

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2						2
CO2	2						2
CO3	3						2
CO4	3						2

3-Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline:

Module outcomes	Description	Duration (Hours)	Cognitive Level
CO1	Describe various types of sensors and their appl	ications.	
M1.01	Mechatronics; Importance of Mechatronics and its applications in modern industries.	3	Understanding
M1.02	Control systems and their types; Open and Closed-loop control System; Measurement systems; Measurement System terminology.	3	Understanding
M1.03	Different types of sensors	6	Understanding
M1.04	Selection of sensors	2	Understanding
M1.05	Application of sensors and controllers in washing machine, automatic water level controller and refrigerators.	3	Understanding

Contents:

Mechatronics; Importance of Mechatronics and its applications in modern industries; Control systems and their types; Open and Closed-loop control System; Measurement systems; Measurement System terminology - Sensors different types - Displacement, Position & Proximity Sensors; Velocity and Motion Sensors; Force Sensors; Fluid Pressure Sensors; Flow Sensors; Liquid Level Sensors; Temperature Sensors; Light Sensors; Selection of Sensors. Application of sensors and controllers in washing machine, automatic water level controller and refrigerators.

CO2	Explain the various mechanical, hydraulic, pneumatic and electrical actuation systems.		
M 2.01	Mechanical actuators - kinematic chain, Geneva mechanism, Mechanical aspects of motor selection.	3	Understanding
M 2.02	Hydraulic and Pneumatic System, -power supply layout- Control valves: Directional control valves-spool valve, poppet valve-pilot operated valve - directional valve,	3	Understanding
M 2.03	Pressure control valves -pressure regulating valve - pressure limiting valve and pressure sequence valves- Flow control valves	3	Understanding
M 2.04	Cylinders Single acting and double acting - cylinder sequencing- cylinder sequencing in drilling process.	3	Understanding
M 2.05	Process control valve - diaphragm actuators - rotary actuators. Semi rotary actuators.	3	Understanding
M 2.06	Electrical actuation systems: mechanical switches- Relays, solid state switches - diodes -thyristors - triacs - bipolar transistors, Solenoids.	3	Understanding
M2.07	Working principle and types of AC and DC motors and Stepper motors.	2	Understanding
M2.08	Application of lift operation (Basic only).	1	Understanding
	Series Test – I	1	

Contents:

Mechanical actuators - kinematic chain, Geneva mechanism, Mechanical aspects of motor selection. Hydraulic and Pneumatic System, -power supply layout- Control valves: Directional control valves- spool valve, poppet valve- pilot operated valve -directional valve, Pressure control valves -pressure regulating valve -pressure limiting valve and pressure sequence valves. Flow control valves. Cylinders. - Single acting and double acting -cylinder sequencing- cylinder sequencing in drilling process, Process control valve - diaphragm actuators - rotary actuators. Semi rotary actuators. Electrical actuation systems: mechanical switches- Relays, solid state switches - diodes -thyristors - triacs - bipolar transistors, Solenoids- working principle and types of AC and DC motors and Stepper motors. Application of lift operation (Basic only).

CO3	Explain the basic PLC architecture and PLC programming concepts.		
M3.01	Programmable Logic Controller (PLC): Definition; Basic block diagram of PLC.	3	Understanding
M3.02	Input/Output processing; PLC Programming: Ladder diagram, its logic functions, Latching and Sequencing.	3	Applying
M3.03	PLC mnemonics.	3	Understanding

M3.04	Timers; Internal relays and Counters; Shift registers; Master and Jump Controls.	3	Understanding
M3.05	Data handling; Analog input/output; Selection of PLC.	3	Applying
M3.06	Timed switch, Wind-screen wiper motion, Bath room scale; Arduino board, Raspberry pi board, its basic application.	4	Understanding

Contents:

Programmable Logic Controller (PLC): Definition; Basic block diagram of PLC; Input/Output processing; PLC Programming: Ladder diagram, its logic functions, Latching and Sequencing; PLC mnemonics; Timers; Internal relays and Counters; Shift registers; Master and Jump Controls; Data handling; Analog input/output; Selection of PLC. Timed switch, Wind-screen wiper motion, Bath room scale; Arduino board, Raspberry pi board, its basic application.

CO4	Describe automation & robotics systems with specdesign factors.	cific empha	sis on robotic
M4.01	Automation & robotics, Robotic System & Anatomy Classification, Future Prospects.	3	Understanding
M4.02	Robotic Application in Manufacturing: Material transfer, Machine loading & unloading.	4	Understanding
M4.03	Processing operations, Assembly & Inspectors Robot Activation & Feedback Components.	3	Understanding
M4.04	Programming for Robots: Methods, Robot design factors.	3	Applying
M4.05	Case studies of Mechatronics systems: A pick-and- place robot, Car park barrier, Car engine management system.	3	Understanding
	Series Test – II	1	

Contents:

Automation & robotics, Robotic System & Anatomy Classification, Future Prospects. Robotic Application in Manufacturing: Material transfer, Machine loading & unloading, Processing operations, Assembly & Inspectors Robot Activation & Feedback Components, Programming for Robots: Methods, Robot design factors. Case studies of Mechatronics systems: A pick-and-place robot, Car park barrier, Car engine management system.

Text / Reference:

T/R	Book Title/Author
T1	Mechatronics – W. Bolton, Pearson Education India.
R1	A Text Book on Mechatronics – R.K.Rajput, S.Chand& Co, New Delhi.
R2	Mechatronics – M.D.Singh& Joshi, Prentice Hall of India.
R3	Mechatronics – HMT, Tata McGraw Hill, New Delhi.
R4	Mechatronics System – Devadas Shetty, PWS Publishing
R5	Exploring Programmable Logic Controllers with applications – Pradeep Kumar Srivatsava, BPB Publications.

Online Resources:

S.No	Website Link
1	https://youtu.be/zVVITxiec7g
2	https://youtu.be/8Qiy2nf4sp0
3	https://youtu.be/Xl2nWDcy0To
4	https://nptel.ac.in/course.html