COURSE TITLE:GEOTECHNICAL ENGINEERINGCOURSE CODE:5013COURSE CATEGORY :APERIODS/WEEK:3PERIODS/SEMESTER:39CREDITS:2

TIME SCHEDULE

Module	Topics	Period
1	Properties of soil	10
2	Permeability and compaction of soil	10
3	Soil exploration	9
4	Foundation engineering	10
	39	

COURSE OUTCOME

SI.	Sub	Student will be able to	
1	1	Know the importance of soil mechanics and three phase system of soil	
	2	Understand the Index properties of soil and it's determination by lab test and field test	
	3	C omprehend the consistency of soil	
2	1	Describe the permeability of soil	
	2	Discuss about the compaction of soil	
	3	Discuss about the soil exploration	
3	1	Explain the concept of bearing capacity of soil	
	2	Discuss about the foundation	

SPECIFIC OUTCOME

Upon completion of the study, the student should be able to:

MODULE - I

1.1.0 Understand origin of soil and importance of geotechnical engineering

- 1.1.1 Define the term soil.
- 1.1.2 Explain origin of soil.
- 1.1.3 Explain the importance of soil Engineering.
- 1.1.4 List the applications of soil mechanics.
- 1.1.5 Identify the types of residual and transported soils.
- 1.1.6 State the three phase system of soil
- 1.1.7 Illustrate three phase system of soil mass
- 1.1.8 Define the terms: water content, bulk unit weights, dry unit weight unit weight of solids, saturated unit weight, submerged unit weight, sp:gravity of soil, void ratio, porosity, degree of saturation, percentage of air voids, air content, and density index.
- 1.1.9 Derive the functional relationships between various properties.
- 1.1.10 Solve problems using functional relationships.

1.2.0 Understand the index properties of soil

- 1.2.1 Describe the determination of water content of soil by oven drying
- 1.2.2 Describe the determination of specific gravity of soil
- 1.2.3 Describe the methods of particle size analysis
- 1.2.4 Describe the procedure of sieve analysis for fine and coarse fractions (wet and dry sieve analysis)
- 1.2.5 Describe procedure of hydrometer method
- 1.2.6 Describe the procedure of calibration of hydrometer
- 1.2.7 Describe the corrections to the hydrometer readings
- 1.2.8 Describe the particle size distribution curves
- 1.2.9 Identify well graded, uniform graded and poorly graded soil samples.
- 1.2.10Estimate uniformity co-efficient and effective size
- 1.2.11 Define the engineering properties of soil
- 1.2.12 Define field density of soil.
- 1.2.13 Describe the procedure of sand replacement method
- 1.2.14 Describe the procedure of core cutter method
- 1.2.15 Give the necessity of classification of soils
- 1.2.16 Give the IS classification of soils

1.3.0 Understand Consistency of soils

- 1.3.1 State Atterberg's limits of soil.
- 1.3.2 Describe the procedure for determination of liquid limits, plastic limits, shrinkage limits
- 1.3.3 Define the terms shrinkage ratio, plasticity index.

MODULE - II

2.1.0 Understand Soil water.

- 2.1.1 Define the terms free water, held water/adsorbed water and capillary water
- 2.1.2 Explain effective pressure, pore pressure and neutral pressure

2.2.0 Understand Permeability of soil

- 2.2.1 Define permeability
- 2.2.2 State Darcy's law
- 2.2.3 Define discharge and seepage velocity
- 2.2.4 List the factors affecting permeability
- 2.2.5 Describe constant and varying head methods for finding coefficient of permeability
- 2.2.6 Determine of coefficient of permeability by constant and varying head test method

2.3.0 Understand the compaction of soil

- 2.3.1 List the objectives of compaction of soil
- 2.3.2 Describe the procedure of Standard and Modified Proctor test.
- 2.3.3 Plot the compaction curve and explain the features (OMC, maximum dry density)
- 2.3.4 Describe the various field compaction methods
- 2.3.5 Explain the factors affecting compaction.

MODULE - III

3.1.0 Understand the basic concept of soil exploration

- 3.1.1 List objectives of site explorations
- 3.1.2 Need of site reconnaissance
- 3.1.3 Identify the depth of exploration
- 3.1.4 Identify the number and position of pits and boring
- 3.1.5 Need of general and detailed exploration
- 3.1.6 Describe the various methods of the explorations
- 3.1.7 List the soil samplers
- 3.1.8 Define undisturbed and disturbed samples
- 3.1.9 Describe the method of Standard Penetration test
- 3.1.10 Describe geophysical methods.

3.2.0 Understand the basic concept of bearing capacity of a soil

- 3.2.1 Define ultimate bearing capacity, safe bearing capacity and allowable bearing pressure.
- 3.2.2 Explain the types of failure analysis general and local shear failure
- 3.2.3 State Terzaghi's theory of bearing capacity
- 3.2.4 Identify effect of water table on bearing capacity.
- 3.2.5 Describe the plate load test.
- 3.2.6 List the limitations of plate load test.

MODULE - IV

4.1.0 Comprehend the type of foundation to be adopted for a particular soil condition

- 4.1.1 Define the term foundation
- 4.1.2 Identify the objectives of foundation
- 4.1.3 Distinguish shallow and deep foundation
- 4.1.4 Identify different types of shallow foundations with sketches
- 4.1.5 Describe the proportioning of rectangular footing.
- 4.1.6 State Rankine's theory for foundation design.

4.1.7 Design of strip or continuous footing based on Rankine's theory.

- 4.1.8 Identify various classifications of pile foundation
- 4.1.9 Describe pile erection methods.

4.1.10 Draw the shapes and component parts of well foundation.

- 4.1.11 Describe the method of well sinking and correcting tilting
- 4.1.12 Identify the causes of failure of foundation and rectifying methods.

CONTENT DETAILS

<u>MODULE – I</u>

Introduction of Soil mechanics: – soil Engineering – Scope of soil Engineering – History of development of soil mechanics –Soil types – residual and transported – Soil as a three phase system – water content. Unit weight of soil – bulk unit weight, dry unit weight, unit weight of solids, saturated unit weight, submerged unit weights – specific gravity –void ratio – porosity – degree of saturation – percentage air voids –Air content -density index - functional relationships –Estimation and relationship between properties.

Determination of index properties: - water content by oven drying method – specific gravity using Pycnometer and specific gravity bottle – particle size distribution – sieve analysis, hydrometer method – particle size distribution curve – consistency of soils - liquid limit, plastic limit, shrinkage limit, plasticity index, consistency index –determination of liquid limits, plastic limit & shrinkage limit - shrinkage ratio. Field

density by sand replacement method and the core cutter method. Classification of soils, Engineering properties of soil-Shear strength-permeability- compressibility. Necessity – I.S. classification.

<u>MODULE – II</u>

Soil water – classification – absorbed water – capillary water - stress condition in soil

Effective and neutral pressures - Permeability of soil – Darcy's law – discharge velocity and seepage velocity – factors affecting permeability - Determination of coefficient of permeability – constant head permeability test – falling head permeability test- coefficient of permeability estimation problems.

Compaction of soil- Definition and objectives of compaction – Standard Proctor test and modified proctor test – concept of O.M.C and maximum dry density – Zero air voids line – field compaction methods – factors affecting compaction.

MODULE – III

Site Investigation and sub-soil exploration – Objectives – site reconnaissance – site exploration – depth of exploration – number and disposition of pits and boring – general exploration – detailed exploration – methods of site exploration – open excavations – boring methods - auger boring – auger and shell boring - wash boring – percussion boring – rotary boring – soil samples and samplers – disturbed sampling – undisturbed sampling–Standard Penetration Test – Geophysical methods (Seismic refraction and Electrical resistivity method.)

Bearing capacity: – ultimate bearing capacity, safe bearing capacity and allowable bearing pressure – general and local shear failure – Terzaghi's theory of bearing capacity – effect of water table - plate load test – limitations.

MODULE – IV

Foundation engineering–different types of foundations – proportioning of foundations – rectangular footing. Design of strip footing using Rankine's equation.

Deep foundations: - Pile foundation – necessity of pile foundation – classification of piles according to materials, mode of transfer of loads, method of installation, use and displacement of soil. Well foundations/caissons – shapes of wells and component parts – well sinking – tilts and shifts – measures for rectification of tilts and shifts.

REFERENCE BOOKS

1. Gopal Ranjan & A.S.R.Rao	: Basic and applied soil mechanics	; New Age International
2. Shashi K Gulhati & Manoj Datta	: Geotechnical Engineering	; Tata McGraw Hill publishing company Ltd
3. P. Purushothama Raj	: Soil Mechanics & foundation Engineering	; Pearson Education
4. Dr.B.C. PUnmia	: Soil Mechanics and Foundation Engineereing	; A.Saurabh&Co(P)
		Ltd
5. Dr.Arora.K.R	: Soil Mechanics and Foundation Engineering	; Standard publishers
6. A.Khan	: Text book of Geotechnical Engineering	; Prentice Hall of India
7. Dr. J.Sha & S.K.sinha	: Construction and Foundation Engineering	; KhannaPublishers Delhi.
8. C.Venkatramaiah	: Geotechnical Engineering	; New age International