COURSE TITLE:GEOTECHNICAL ENGINEERING LABCOURSE CODE:5018COURSE CATEGORY :PPERIODS/WEEK:3PERIODS/SEMESTER:39CREDITS:2

TIME SCHEDULE

Module	Topics	Period
1	Index properties of soil	21
2	Permeability Test Compaction Test Shear Test Consolidation Test	18
	TOTAL	39

COURSE OUTCOME

SI.	Sub	Student will be able to
1	1	Determine the index properties of soil
	2	Determine the coefficient of permeability of soil
	3	Evaluate OMC and corresponding max. density of soil by compaction test
2	1	Determine shear strength parameters of soil
	2	Determine compression index of soil

SPECIFIC OUTCOME

Upon completion of course students should be able to

- 1. Determine Specific gravity of soil using specific gravity bottle method
- 2. Determine Water content in soil using oven drying method
- 3. Determine Void ratio and porosity of soil
- 4. Determine Particle size distribution by Sieve analysis of soil and draw gradation curve
- 5. Demonstrate Particle size distribution of fine grained soil using hydrometer method.
- 6. Determine Field and dry unit weight of soils using core cutter method.

- 7. Determine Field and dry unit weight of soils using sand replacement method.
- 8. Determine Atterberg's limits of soil a) liquid limit, b) plastic limit c) shrinkage limit d) plasticity index.
- 9. Determine coefficient of Permeability of soil by -a) constant head b) variable head methods.
- 10. Determine OMC and maximum dry density of soil using Proctor compaction test.
- 11. Determine Shear strength parameters of soil using direct shear test

CONTENT DETAILS

Tests on soil - specific gravity - water content - the void ratio - porosity - bulk density-

effective size - uniformity coefficient - fineness modulus- Gradation curve - field and dry densities - liquid limit - plastic limit- shrinkage limit - plasticity index - coefficient of permeability -max.dry density corresponding to OMC – shear strength parameters C and \emptyset .