COURSE TITLE : ENVIRONMENTAL ENGINEERING

COURSE CODE : 6012
COURSE CATEGORY : A
PERIODS/WEEK : 5
PERIODS/SEMESTER: 75
CREDITS : 4

TIME SCHEDULE

Module	Topics	Period
1	Introduction to water supply engineering	17
	Sources of water	
	Quality of water	
2	Treatment of water	20
	Distribution system	
	Water supply arrangements in building	
	Introduction to sanitary engineering	18
3	Quality of sewage	
	Sewer sections and layout	
	Sewer appurtenances	
4	Sewage treatment and disposal	20
	Solid waste management	
	Drainage and sanitation in buildings	
	Rural water supply and sanitation	
	Pollution control board	
TOTAL		75

COURSE OUTCOME

SI.	Sub	Student will be able to
1	1	Estimate water demands
	2	Analyze the quality of water
	3	Suggest the treatment required by knowing the quality of water
2	1	Know the sewerage system.
	2	Analyze the sewage
	3	Suggest the waste water treatment
3	1	Suggest the treatment for industrial waste
	2	Know the solid waste management

SPECIFIC OUT COME

Upon completion of course the student should be able to understand,

MODULE - I

1.1.0 Understand importance of water supply

- 1.1.1 List the necessity for public water supply
- 1.1.2 List the need for protected water supply

1.2.0 Understand the method of determining yield from surface and underground sources for a water supply scheme.

- 1.2.1 Identify the salient features of various surface sources
- 1.2.2 Define terms: Aquifer, Ground water table& perched water table.
- 1.2.3 Define various types of wells according to construction.
- 1.2.4 Define terms: draw down, critical depression of head, circle of influences, cone of depression, confined and unconfined aquifer, and specific yield
- 1.2.5 Explain the methods of determining yield from surface and underground sources
- 1.2.6 Explain procedure for determining yield of well by pumping tests
- 1.2.7 Explain with sketches: Infiltration galleries, Infiltration Wells

1.3.0 Apply the procedure to estimate water requirements for a water supply scheme

- 1.3.1 List the factors affecting per capita demand
- 1.3.2 List the requirements of water for various purposes: Domestic purposes, Industrial use, Fire fighting, commercial and Institutional needs, Public use
- 1.3.3 Identify the variation in demand for water supply scheme for a town
- 1.3.4 Describe methods to forecast population.
- 1.3.5 Solve simple problems on forecasting population by different methods
- 1.3.6 State the method of determining total quantity of water supply scheme

1.4.0 To Understand the standard tests for analyzing water for drinking purposes as per IS Code

- 1.4.1 State the need for laboratory tests for testing water
- 1.4.2 List the various impurities of water
- 1.4.3 Explain the method of obtaining sample for testing
- 1.4.4 Explain the different tests for analyzing quality of water with their significance
- 1.4.5 List various standards of potable water.

MODULE - II

2.1.0 Understand the methods of purification of water

- 2.1.1 Draw the overall layout of water treatment plant indicating the different stages
- 2.1.2 List the objects of aeration, plain sedimentation, sedimentation with coagulation, filtration, and disinfection.
- 2.1.3 Explain the process of aeration, plain sedimentation by coagulation, filtration
- 2.1.4 Describe the construction and operation of slow sand, rapid and pressure filters and compare them
- 2.1.5 Explain the necessity and methods of disinfection of water

- 2.1.6 Identify the different forms and points of chlorination
- 2.1.7 Explain the treatment methods to control of odour, colour, taste and hardness of water.

2.2.0 Understand the methods of conveyance of water

- 2.2.1 Describe with sketches intake for collection of water
- 2.2.2 Explain the different methods of conveyance of water
- 2.2.3 List the merits and demerits of different types of pipes used for conveyance of water
- 2.2.4 Explain with sketches the different joints used for connecting pipes
- 2.2.5 State the causes and prevention of pipe corrosion.

2.3.0 Understand the systems of distribution and layouts

- 2.3.1 Explain with sketches the different systems of distribution systems
- 2.3.2 Explain with sketches the different layouts of distribution system
- 2.3.3 List the merits and demerits of layouts with their suitability for a given locality

2.4.0 Understand the appurtenances in distribution system

- 2.4.1 Identify the various appurtenances in a distribution system
- 2.4.2 Explain with sketches the functions of the various appurtenances in a distribution system

2.5.0 Understand the water supply arrangements in single and multi storied buildings

- 2.5.1 Define terms: Water main, supply pipe, service pipe, distribution pipe, communication pipe, air gap,
- 2.5.2 Explain the general layout of water supply connections of buildings Public water supply and Individual water supply arrangements for single and multi storied building as per IS Code.

MODULE - III

3.1.0 Understand basic facts about sanitary engineering.

- 3.1.1 Define terms: Sewage, Sewerage, Sewer, refuse, sullage, and garbage
- 3.1.2 List the objects of sewage disposal works
- 3.1.3 Compare conservancy system with water carriage system
- 3.1.4 Explain different sewerage systems
- 3.1.5 Compare the systems of sewerage with each other

3.2.0 Understand the characteristics of sewage

- 3.2.1 Define strength of sewage
- 3.2.2 Explain the method of sampling sewage.
- 3.2.3 State the physical, chemical and biological characteristics of sewage
- 3.2.4 List various tests to analyze sewage

3.3.0 Understand the types of sewers

- 3.3.1 List shapes and materials used for sewers
- 3.3.2 List merits and demerits for each type

3.2.0 Understand the principles of designing a sewer

- 3.2.1 List the main constituents of sewage for calculating quantity
- 3.2.2 List the factors on which dry weather flow depends

- 3.2.3 Identify the variation in rate of sewage
- 3.2.4 Identify the different types of surface drains and their functions

3.3.0 Understand the various types of sewer appurtenances

- 3.3.1 State the necessity for pumping sewage
- 3.3.2 Explain the component parts of a pumping station and factors influencing its location
- 3.3.3 Identify the location, function and construction of various sewer appurtenances.

MODULE - IV

4.1.0 Understand the primary and secondary treatment of sewage

- 4.1.1 List the objects of sewage treatment
- 4.1.2 Describe the functions and working of screens, skimming tanks, and grit chambers.
- 4.1.3 Draw a septic tank of given data.
- 4.1.4 Describe with sketch the following treatment works: Sedimentation tank, Contact beds, Intermittent sand filters, Trickling filter, Activated sludge process, Sludge drying, Sludge disposal, Aeration tank
- 4.1.5 Explain with sketches the disposal of sewage by Imhoff and septic tanks
- 4.1.6 Explain the term: Self purification
- 4.1.7 List the methods of disposal of sewage wastes

4.2.0 Know the drainage arrangements for single and multi storied buildings.

- 4.2.1 State the aims of buildings drainage and its requirements
- 4.2.2 Draw different sanitary fittings like water closets, flushing cistern, urinals, inspection chambers, traps, anti-syphonage pipes.

4.3.0 Understand the methods of rural sanitation

- 4.3.1 List the methods of rural sanitation
- 4.3.2 Draw sanitary latrines in rural areas
- 4.3.3 Describe the operation of a bio gas plant using cow dung, night soil and agricultural waste.

4.4.0 Understand the working of pollution control boards

4.4.1 State the functions of pollution control boards

CONTENT DETAILS

MODULE - I

WATER SUPPLY ENGINEERING:- General importance of water supply-Development of water supply-Different systems of water supply-Need for protect water supply-Estimating water requirement:- Total quantity of water for a town, per capita demand and factors affecting demand- Water requirements for domestic purposes, industrial use, fire fighting, commercial and industrial needs, public use- Variation in demand – Peak demand during day, month and year-Fore casting population by arithmetical, geometrical and incremental increase method (problems)

Sources of Water:-Surface source – lakes, streams, rivers and impounded reservoirs, Yield from surface source-Underground sources – springs, wells, infiltration wells and galleries- Yield from wells – test for yield.

Conveyance of water:-Types of Intakes-Reservoir intake-River intake-Canal intake- open channels, aqueduct pipes- List of pipe materials – C.I. pipes, steel pipes, concrete pipes, A.C. pipes, G.I. pipes, plastic and P.V.C. pipes, high density polythene pipes, merits and demerits of each type (brief description only). Pipe joints – spigot and socket joint, flange joint, expansion joint for C.I. pipe, joints for concrete and asbestos cement pipe- methods of leak detection –prevention –rectification- Pipe corrosion – causes and prevention

MODULE - II

PURIFICATION OF WATER:- Quality of Water: - Impurities of water — need for laboratory test. Sampling and Testing of water — physical, chemical, and bacteriological tests (brief description only) —Various standards of water such as pH value, color, taste, hardness, odour - for potable water- Flow diagram of different treatment units for both surface and ground sources — reservoir / pond and well Aeration — methods of aeration- Sedimentation — plain sedimentation and sedimentation by coagulation-Filtration—construction and operation of slow sand, rapid sand and pressure filters- Disinfections of water — necessity and method, chlorination, pre-chlorination, break point chlorination, super chlorination. Removal of Taste, colour, odour and hardness Note: (No design for treatment units) Distribution system:- General requirements, system of distribution, gravity system, combined system, direct pumping- Methods of supply — intermitted and continuous — advantages & disadvantages Layout of distribution system -Types — dead end, grid, radial and ring system their merits and demerits and their suitability.

Appurtenances in Distribution system: - Uses of Sluice valves, Check valves or reflux valves, Air valves, Drain valves or blow-off valves, Scour valves, Fire hydrants and Water meters- (brief description only). Water supply arrangements in Building, Definition of terms- water main, service pipe, communication pipe, supply pipe, distribution pipe, air gap- General layout of water supply arrangements for single and multistoried building as per I.S. Code of practice general principles and precautions in laying pipe line within the premises of a building- Connection from water main to building- (Brief description only)

MODULE - III

SANITARY ENGINEERING:- Objects of providing sewerage works - Definition of terms – sewage, sewerage, sewer, refuse, garbage, sullage etc- Systems of sewage disposal – conservancy and water carriage systems- Types of sewerage systems and their suitability – separate, combined and partially separate- Quantity of Sewage- Quantity of discharge in sewers, dry weather flow, variability of flow, limiting velocities of sewers- Surface drainages – requirements, shapes=Different shapes of cross section for sewers – rectangular, circular, egg shaped – merits and demerits of each.

Brief description and choice of types of sewers – stone ware, cast iron, cement concrete, pre cast sewers, AC pipe.

Sewer appurtenances:- location, function and construction of Man holes, Drop man holes, Catch basins, Flush tanks and Inverted siphon -(Brief description only). Necessity of pumping sewage — location and component parts of pumping station

Sewage characteristics:- Strength of sewage, sampling of sewage, characteristics of sewage – physical, chemical and biological – significance of the following tests for –Solids, Oxygen demand, BOD, COD,Phvalue, Chlorides

MODULE - IV

SEWAGE TREATMENT AND DISPOSAL:- Preliminary treatment – brief description and functions of Screens, Skimming tanks and Grit chambers. Primary treatment – brief description and functions of plain sedimentation. Secondary treatment – brief description of Trickling filters, Activated sludge process, Secondary clarifier and Sludge digestion, drying, disposal.

Miscellaneous treatment: – septic tank – imhoff tank - Calculation of dimension of a septic tank from a given data. Sewage disposal – dilution, disposal on lands, oxidation ponds, oxidation ditch, aerated lagoons, an aerobic lagoons. (brief description only)

Drainage and Sanitation in Buildings (brief description):- Sanitary fittings – traps, water closets, flushing cisterns, urinals, inspection chambers, anti syphonage pipe.

Rural sanitation and sanitary latrines, brief description of operational details of bio-gas plants using cow dung, night soil and agricultural wastes

Pollution Control Board: - The functions with respect to monitoring and control of air and water pollution.

REFERENCE

1. S.C.Rangwala : Water Supply and Sanitary Engineering ; Charotar Publishing House

2. K.N.Dugal : Elements of Public Health Engineering ; S.Chand &Co
 3. S.K.Hussain : Public Health Engineering ; S.Chand &Co
 4. V.N.Vizirani : Water Supply and Sanitary Engineering ; Khanna Publishers

5. G.N. Pandey & G.C. Carney: Environmental Engineering; Dhanpat R