Program : Diploma in Computer Engineering / Computer Hardware Engineering	
Course Code : $\mathbf{3 1 3 4}$	Course Title: Digital Computer Fundamentals
Semester :3	Credits: $\mathbf{3}$
Course Category: Program Core	
Periods per week: $\mathbf{3}$ (L:3 T:0 P:0)	Periods per semester: $\mathbf{4 5}$

Course Objectives:

- Understand the data representation in the Computer System.
- Perform number conversion from one system to another.
- Understand use of boolean algebra and K-Map in digital circuits.
- Equip students to design and develop simple combinational and sequential circuits.

Course Prerequisites:

Topic/Description	Course code	Course Title	Semester
To comprehend semiconductor physics, diodes, Transistors and working of rectifiers.		Fundamentals of Electrical and Electronics	2

Course Outcomes

On completion of the course student will be able to:

COn	Description	Duration (Hours)	Cognitive Level
CO1	Perform number system conversions, binary arithmetic operations and binary coding	8	Applying
CO 2	Make use of Boolean algebra and the Karnaugh Map for the implementation of logic functions.	11	Applying
CO 3	Design combinational circuits.	12	Applying
CO 4	Design sequential circuits.	12	Applying
	Series Test	2	

CO - PO Mapping:

Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO1	3						
CO 2	3						
CO 3	3						
CO 4	3						

3-Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline

	Description	Duration (Hours)	Cognitive Level
CO1	Perform number system conversions, binary arithmetic operations and binary coding		
M1.01	Perform conversions from one number system todifferent number systems	2	Applying
M1.02	Apply arithmetic operations on binary numbers	2	Applying
M1.03	Represent signed numbers in digital systems	1	Understanding
M1.04	Summarize different types of binary codes	2	Understanding
M1.05	Solve addition of BCD numbers	Applying	
Contents: Number Systems: Introduction to different Number Systems - Decimal, Binary, Octal, Hexadecimal - Conversion from one Number System to another- 1's complement, 2's complement- Binary addition, 1' complement and 2's complement subtraction- Signed Number Representations -Binary codes - Binary Coded Decimal- 8421, Gray Code, Error detection code-Parity, Error correction-Hamming code, Alphanumeric code-ASCII.,BCD Addition.			
CO2	Make use of Boolean algebra and the Karnaugh Map for the implementation of logic functions.		
M2.01	Illustrate basic theorems of Boolean algebra	2	Understanding
M2.02	Make use of Boolean algebra to simplify logic functions	3	Applying

M2.03	Illustrate properties of basic and universal gates	3	Understanding
M2.04	Make use of logic gates to implement logic functions	1	Applying
M2.05	Make use of K-Map for the implementation of logic functions	2	Applying
	Series Test - I	1	
Contents: Axiomatic definitions of Boolean Algebra, Two-valued Boolean AlgebraBasic Theorems and Definitions, Boolean Functions, Simplifications of Boolean functions using axioms and theorems. Standard forms-POS, SOP and Canonical Form of Boolean Functions,. Basic and universal gates-Representation, truth table, -Implement NOT,AND, OR using NOR, NAND gates, K-map up to 4 variables and simplification of Boolean functions using k-map and design logic diagrams, Identify don't care condition			
CO 3	Design Combinational Circuits		
M3.01	Illustrate the design procedure of combinational circuits	2	Understanding
M3. 02	Construct half adder and full adder circuits	2	Applying
M3.03	Make use of binary parallel adder toimplement parallel adder-subtractor circuit	2	Applying
M3.04	Construct combinational circuits for multiplication,comparison, decoding, encoding and priority encoding	6	Applying
Contents:Combinational Logic, Analysis \& Design procedure-using Gray to binary convertor, Half Adder, Full Adder, 4-bit Parallel adder, 4-bit binary adder/subtractor, BCD Adder, Binary Multiplier(up to 2 bit), 2-bit Magnitude Comparator, Decoder, Encoder, priority encoder, two-to-one-line multiplexer.			
CO4	Design Sequential Circuits		
M4.01	Explain sequential circuits	1	Understanding
M4.02	Illustrate operation of different latches and flip flops	4	Applying
M4.03	Outline different type of registers	1	Understanding
M4.04	Construct asynchronous and synchronous counters using flip flops	6	Applying
	Series Test - II	1	

Contents

Sequential circuit-definition, block diagram, explanation, comparison with combinational circuit; Synchronous and asynchronous sequential circuit-comparison, synchronous clocked sequential circuit-block diagram, latches and flip flops, SR latch (with NOR,NAND, with control input), D latch, characteristic tables; Edge triggered DFF using D-latches, JK FF, MS-JK FF, T-FF -characteristic tables; Registers-definition, shift registers-data transmission in shift registers-serial-in-serial out, serial-in parallel out, Parallel in Serial out, Parallel-in parallel out- logic diagrams only; Asynchronous counter- 4-bit binary counter, BCD counter; Synchronous counter- state table of a sequential circuit, design 4-bit binary counter, BCD counter, Ring Counter.

Text/Reference:

T/R	Book Title/Author
T1	M. Morris Mano \& Michael D. Ciltti, Digital Design, Pearson Education, 5th Ed.
R2	A. Anand Kumar, Fundamentals of digital circuits, PHI Learning Pvt. Ltd., 2003
R3	Malvino\&Leach ,Digital Principles and Applications, McGraw-Hill

Online resources

Sl.No	Website Link
1	http://www.asic-world.com/digital/tutorial.html
2	https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/
3	https://www.digitalelectronicsdeeds.com/
4	https://en.wikipedia.org/wiki/Digital_electronics

