

CET campus, Thiruvananthapuram - 695 016 Ph: 0471 2598122; Fax: 2598522 <u>www. ktu.edu.in</u> Email: university@ktu.edu.in

No KTU/ASST(ACADEMIC)/2692/2018

Dated:24.11.2021

CIRCULAR

Sub: Academic Calendar of odd Semesters -M.Tech S3, M.Arch S3, M.Plan S3 - Reg.

The Academic Calendar of odd semesters (November 2021 to March 2022) for **M.Tech S3, M.Arch S3, M.Plan S3** programmes is published herewith.

Dr. Sadiq A. Dean (Academic)

Сору То,

- 1. Principals of all affiliated Institutions.
- 2. CoE/KTU Support.
- 3. AD-IT (for publishing in the website).

* This is a computer system (Digital File) generated letter. Hence there is no need for a physical signature.

Academic Calendar - November 2021 to March 2022

M.Tech S3, M.Arch S3, M.Plan S3

		Nov-21		Dec-21				Jan-22				
Days	Date	Description	Class	Days	Date	Description	Class	Days	Date	Description	Class	
Mon	1			Wed	1	First CC Meeting	15	Sat	1		34	
Tue	2			Thu	2	Course Selection and Mapping Ends(M.Tech S3,M.Arch S3, M.Plan S3)	16	Sun	2			
Wed	3			Fri	3		17	Mon	3		35	
Thu	4	Deepavali		Sat	4		18	Tue	4		36	
Fri	5			Sun	5			Wed	5		37	
Sat	6			Mon	6		19	Thu	6		38	
Sun	7			Tue	7		20	Fri	7	First Series test to be completed(M.Tech S3,M.Arch S3, M.Plan S3)	39	
Mon	8			Wed	8		21	Sat	8			
Tue	9			Thu	9		22	Sun	9			
Wed	10			Fri	10		23	Mon	10		40	
Thu	11			Sat	11			Tue	11		41	
Fri	12			Sun	12			Wed	12		42	
Sat	13			Mon	13		24	Thu	13		43	
Sun	14			Tue	14		25	Fri	14		44	
Mon	15	Commencement of classes (M.Tech S3,M.Arch S3, M.Plan S3)	1	Wed	15		26	Sat	15		45	
Tue	16		2	Thu	16		27	Sun	16			
Wed	17		3	Fri	17		28	Mon	17		46	
Thu	18		4	Sat	18			Tue	18		47	
Fri	19		5	Sun	19			Wed	19		48	
Sat	20		6	Mon	20			Thu	20		49	
Sun	21			Tue	21			Fri	21		50	
Mon	22		7	Wed	22			Sat	22		51	
Tue	23		8	Thu	23			Sun	23			
Wed	24		9	Fri	24			Mon	24		52	
Thu	25		10	Sat	25	Christmas		Tue	25		53	
Fri	26	Course Selection and Mapping Begins(M.Tech S3 ,M.Arch S3, M.Plan S3)	11	Sun	26			Wed	26	Republic Day		
Sat	27		12	Mon	27		29	Thu	27		54	
Sun	28			Tue	28		30	Fri	28	Second CC Meeting	55	
Mon	29		13	Wed	29		31	Sat	29		56	
Tue	30		14	Thu	30		32	Sun	30			
				Fri	31		33	Mon	31		57	

Academic Calendar - November 2021 to March 2022

M.Tech S3, M.Arch S3, M.Plan S3

		Feb-22		Mar-22						
Days	Date	Description	Class	Days	Date	Description	Class			
Tue	1	Exam Registration Begins (M.Tech S3,M.Arch S3, M.Plan S3)	58	Tue	1	Maha Sivarathri				
Wed	2		59	Wed	2					
Thu	3		60	Thu	3					
Fri	4		61	Fri	4					
Sat	5		62	Sat	5					
Sun	6			Sun	6					
Mon	7		63	Mon	7					
Tue	8		64	Tue	8					
Wed	9		65	Wed	9					
Thu	10	Exam Registration Ends (M.Tech S3,M.Arch S3, M.Plan S3)	66	Thu	10					
Fri	11		67	Fri	11					
Sat	12			Sat	12					
Sun	13			Sun	13					
Mon	14		68	Mon	14					
Tue	15		69	Tue	15					
Wed	16		70	Wed	16					
Thu	17		71	Thu	17					
Fri	18		72	Fri	18					
Sat	19	Second Series test to be completed(M.Tech S3,M.Arch S3, M.Plan S3)	73	Sat	19					
Sun	20			Sun	20					
Mon	21		74	Mon	21					
Tue	22		75	Tue	22					
Wed	23	Third CC Meeting	76	Wed	23					
Thu	24		77	Thu	24					
Fri	25	Publish IA Marks (M.Tech S3,M.Arch S3, M.Plan S3)	78	Fri	25					
Sat	26		79	Sat	26					
Sun	27			Sun	27					
Mon	28	Class Ends Publish Attendance (M.Tech S3,M.Arch S3, M.Plan S3)	80	Mon	28					
				Tue	29					
				Wed	30					
				Thu	31					

Academic Calendar - November 2021 to March 2022

M.Tech S3, M.Arch S3, M.Plan S3

	Events	
SI. No.	Odd Semester(2021-22)	Important Dates
1	Commencement of classes(M.Tech S3,M.Arch S3, M.Plan S3)	15-Nov
2	Course Selection and Mapping (M.Tech S3, M.Arch S3, M.Plan S3)	26 Nov - 2 Dec
3	CC Meetings	Dec 1, Jan 28, Feb 23
4	First Series test to be completed(M.Tech S3,M.Arch S3, M.Plan S3)	07-Jan
5	Exam Registration	Feb 1 - Feb 10
6	Second Series test to be completed (M.Tech S3,M.Arch S3, M.Plan S3)	19-Feb
7	Publish IA Marks (M.Tech S3, M.Arch S3, M.Plan S3)	25-Feb
8	Class Ends Publish Attendance (M.Tech S3,M.Arch S3, M.Plan S3)	28-Feb

CET campus, Thiruvananthapuram - 695 016 Ph: 0471 2598122; Fax: 2598522 <u>www. ktu.edu.in</u> Email: university@ktu.edu.in

No. KTU/AC1/582/2022

Dated:11.03.2022

<u>CIRCULAR</u>

Sub:

Academic Calendar of Various Even Semesters Programmes -Published - Circulated - Reg.

The Academic Calendar of even semesters (March 2022 to August 2022) for **B.Tech S8, BHMCT S6, B.Des S6/S4/S2, MBA S2, MCA/Int MCA S2 programmes** is published herewith.

Dr. Sadiq A. Dean (Academic)

To:

- 1. Principals of all affiliated Institutions.
- 2. Controller of Examinations
- 3. KTU Support.
- 4. AD-IT (for publishing in the website).

* This is a computer system (Digital File) generated letter. Hence there is no need for a physical signature.

Academic Calendar - March 2022 to August 2022

B.Tech S8, BHMCT S6,B.Des S6/S4/S2,MBA S2, MCA/Int MCA S2

		Mar-22			Apr-22					May-22					
Days	Date	Description	Class	Days	Date	Description	Class	Days	Date	Description	Class				
Tue	1	Maha Sivarathri		Fri	1		26	Sun	1	May Day					
Wed	2	Commencement of classes MCA/Int MCA S2	1	Sat	2		27	Mon	2	ld-ul-Fitr					
Thu	3	Commencement of classes B.Tech S8, BHMCT S6,B.Des S6	2	Sun	3			Tue	3		49				
Fri	4		3	Mon	4	Course Selection and Mapping Begin B.Des S4/S2	28	Wed	4		50				
Sat	5		4	Tue	5		29	Thu	5		51				
Sun	6			Wed	6	Course Selection and Mapping Ends B.Des S4/S2	30	Fri	6		52				
Mon	7		5	Thu	7		31	Sat	7		53				
Tue	8		6	Fri	8	First CC Meeting B.Des S4/S2	32	Sun	8						
Wed	9	Commencement of classes MBA S2	7	Sat	9			Mon	9		54				
Thu	10		8	Sun	10			Tue	10		55				
Fri	11		9	Mon	11	First Series Test B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	33	Wed	11		56				
Sat	12			Tue	12		34	Thu	12		57				
Sun	13			Wed	13		35	Fri	13		58				
Mon	14	First CC Meeting B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	10	Thu	14	Maundy Thursday		Sat	14						
Tue	15		11	Fri	15	Vishu/ Good Friday		Sun	15						
Wed	16	Course Selection and Mapping Begins B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	12	Sat	16		36	Mon	16		59				
Thu	17		13	Sun	17			Tue	17	Exam Registration for B.Tech S8, BHMCT S6,B.Des S6/S4/S2,MBA S2, MCA/Int MCA S2	60				
Fri	18	Course Selection and Mapping Ends B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	14	Mon	18		37	Wed	18		61				
Sat	19		15	Tue	19		38	Thu	19	First Series Test B.Des S4/S2	62				
Sun	20			Wed	20		39	Fri	20		63				
Mon	21		16	Thu	21		40	Sat	21	Exam Registration Ends for B.Tech S8, BHMCT S6,B.Des S6/S4/S2,MBA S2, MCA/Int MCA S2	64				
Tue	22		17	Fri	22		41	Sun	22						
Wed	23		18	Sat	23		42	Mon	23		65				
Thu	24		19	Sun	24			Tue	24		66				
Fri	25		20	Mon	25		43	Wed	25	Second CC Meeting B.Des S4/S2	67				
Sat	26		21	Tue	26		44	Thu	26	Second Series Test B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	68				
Sun	27			Wed	27		45	Fri	27		69				
Mon	28	Commencement of classes B.Des S4/S2	22	Thu	28	Second CC Meeting B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	46	Sat	28		70				
Tue	29		23	Fri	29		47	Sun	29						
Wed	30		24	Sat	30		48	Mon	30		71				
🖳 hu	31		25					Tue	31		72				

		No. of Concession, Name		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY										
		KU			Ac	ademic Calendar - I	Mai	rch 2	022	to August 2022				
		9			B. 7	ech S8, BHMCT S6,B.Des	S6/S4	4/S2,M	BA S	52, MCA/Int MCA S2				
		Jun-22				Jul-22		Aug-22						
Days	Date	Description	Class	Days	Date	Description	Class	Days	Date	Description	Class			
Wed	1	Third CC Meeting B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	73	Fri	1			Mon	1					
Thu	2		74	Sat	2			Tue	2					
Fri	3	Publish IA Marks for B.Tech S8 ,B.Des S6	75	Sun	3			Wed	3					
Sat	4	Class Ends Publish Attendance for B.Tech S8 ,B.Des S6	76	Mon	4			Thu	4					
Sun	5			Tue	5			Fri	5					
Mon	6		77	Wed	6			Sat	6					
Tue	7		78	Thu	7			Sun	7					
Wed	8		79	Fri	8			Mon	8	Muharram				
Thu	9		80	Sat	9			Tue	9					
Fri	10		81	Sun	10			Wed	10					
Sat	11			Mon	11	Commencement of End Semester Examination BHMCT S6/B.Des S2/B.Des S4		Thu	11					
Sun	12			Tue	12			Fri	12					
Mon	13		82	Wed	13			Sat	13					
Tue	14		83	Thu	14			Sun	14					
Wed	15	Second Series Test B.Des S4/S2 Publish IA Marks for MBA S2, MCA/Int MCA S2 Commencement of End Semester Examination B.Tech S8/B.Des S6	84	Fri	15			Mon	15	Independence Day				
Thu	16	Class Ends Publish Attendance for MBA S2, MCA/Int MCA S2	85	Sat	16			Tue	16					
Fri	17		86	Sun	17			Wed	17					
Sat	18		87	Mon	18			Thu	18	Sreekrishna Jayanthi				
Sun	19			Tue	19			Fri	19					
Mon	20		88	Wed	20			Sat	20					
Tue	21		89	Thu	21			Sun	21					
Wed	22		90	Fri	22			Mon	22					
Thu	23	Third CC Meeting B.Des S4/S2 Publish IA Marks for BHMCT	91	Sat	23			Tue	23					
Fri	24	S6 Class Ends Publish Attendance	92	Sun	24			Wed	24					
Sat	25	for BHMCT S6	93	Mon	25			Thu	25					
Sun	26			Tue	26			Fri	26					
Mon	27	Commencement of End Semester Examination MBA S2, MCA/Int MCA S2	94	Wed	27			Sat	27					
Tue	28		95	Thu	28	Karkadaka Vavu		Sun	28					
Wed	29	Publish IA Marks for B.Des S4/S2	96	Fri	29			Mon	29					
Thu	30	Class Ends Publish Attendance for B.Des S4/S2	97	Sat	30			Tue	30					
1		1		Sun	31			Wed	31					

Academic Calendar - March 2022 to August 2022

B.Tech S8, BHMCT S6,B.Des S6/S4/S2,MBA S2, MCA/Int MCA S2

Events											
SI.No	Even Semester(2021-22)	Important Dates									
1	Commencement of classes MCA/Int MCA S2	02-03-2022									
2	Commencement of classes B.Tech S8, BHMCT S6,B.Des S6	03-03-2022									
3	Commencement of classes MBA S2	09-03-2022									
4	Commencement of classes B.Des S4/S2	28-03-2022									
-	CC Montings for D Took SQ, DUMCT SC D Dos SC MDA S2, MCA/Int MCA S2	14-03-2022, 28-04-2022,									
5	CC Meetings for B. rech 38, BRIMCT SO, B. Des SO, MBA SZ, MCA/IIIL MCA SZ	01-06-2022									
6		08-04-2022, 25-05-2022,									
6	CC Meetings for B.Des S4/S2	23-06-2022									
7	Course Selection and Mapping Begins B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	16-03-2022									
8	Course Selection and Mapping Begins B.Des S4/S2	04-04-2022									
9	Course Selection and Mapping Ends B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	18-03-2022									
10	Course Selection and Mapping Ends B.Des S4/S2	06-04-2022									
11	Commencement of First Series Test B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	11-04-2022									
12	Commencement of First Series Test B.Des S4/S2	19-05-2022									
13	First Series test to be completed B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	13-04-2022									
14	First Series to be completed Test B.Des S4/S2	21-05-2022									
15	Commencement of Second Series B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	26-05-2022									
16	Commencement of Second Series test B.Des S4/S2	15-06-2022									
17	Second Series test to be completed for B.Tech S8, BHMCT S6,B.Des S6,MBA S2, MCA/Int MCA S2	28-05-2022									
18	Second Series test to be completed for B.Des S4/S2	17-06-2022									
19	Exam Registration begins for B.Tech S8, BHMCT S6,B.Des S6/S4/S2,MBA S2, MCA/Int MCA S2	17-05-2022									
20	Exam Registration Ends for B.Tech S8, BHMCT S6,B.Des S6/S4/S2,MBA S2, MCA/Int MCA S2	21-05-2022									
21	Publish IA Marks for B.Tech S8 ,B.Des S6	03-06-2022									
22	Class Ends Publish Attendance for B.Tech S8 ,B.Des S6	04-06-2022									
23	Publish IA Marks for MBA S2, MCA/Int MCA S2	15-06-2022									
24	Class Ends Publish Attendance for MBA S2, MCA/Int MCA S2	16-06-2022									
25	Publish IA Marks for BHMCT S6	24-06-2022									
26	Class Ends Publish Attendance for BHMCT S6	25-06-2022									
27	Publish IA Marks for B.Des S4/S2	29-06-2022									
28	Class Ends Publish Attendance for B.Des S4/S2	30-06-2022									
29	Commencement of End Semester Examination B.Tech S8/B.Des S6	15-06-2022									
30	Commencement of End Semester Examination MBA S2, MCA/Int MCA S2	27-06-2022									
31	Commencement of End Semester Examination BHMCT S6/B.Des S2/B.Des S4	11-07-2022									

HUN	PROFESSIONAL COMMUNICATION	CATEGORY	L	Т	Ρ	CREDIT
102		MNC	2	0	2	

Preamble: Clear, precise, and effective communication has become a *sine qua non* in today's information-driven world given its interdependencies and seamless connectivity. Any aspiring professional cannot but master the key elements of such communication. The objective of this course is to equip students with the necessary skills to listen, read, write, and speak so as to comprehend and successfully convey any idea, technical or otherwise, as well as give them the necessary polish to become persuasive communicators.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop vocabulary and language skills relevant to engineering as a profession										
CO 2	Analyze, interpret and effectively summarize a variety of textual content										
CO 3	Create effective technical presentations										
CO 4	Discuss a given technical/non-technical topic in a group setting and arrive at										
	generalizations/consensus										
CO 5	Identify drawbacks in listening patterns and apply listening techniques for specific needs										
CO 6	Create professional and technical documents that are clear and adhering to all the										
	necessary conventions										

Mapping of course outcomes with program outcomes

\square	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	РО
						-				10	11	12
CO 1						1.00				3		2
CO 2						1.1.2				1		3
CO 3				1		1			1	3		
CO 4										3		1
CO 5		1							2	3		
CO 6	1					1			1	3		

Mark distribution

Total Marks	CIE	ESE	ESE Duration
100	50	50	2 hours

Continuous Internal Evaluation

Total N	1arks: 50		
Attend	ance		: 10 marks
Regula	r assessment		: 25 marks
Series t	test (one test o	only, should include verbal aptitude for placeme	nt and higher studies, this test
will be	conducte <mark>d for</mark>	50 marks and reduced to 15)	: 15 marks
Regula	r assessment		
Project	report present	ation and Technical presentation through PPT	: 7.5 marks
Listenir	ng Test	TRADITION NO.	: 5 marks
Group	discussion/mod	ck job interview	: 7.5 marks
Resum	e submission	생겨는 아님께서 다 망망했다.	: 5 marks
Total N Course	larks: 50, Time Level Assessm	ent Questions	
Course	Outcome 1 (C	01):	
1.	List down the	ways in which gestures affect verbal communica	tion.
2.	Match the wo	rds and meanings	
	Ambiguous	promotion	
	Bona fide	referring to whole	
	Holistic	not clear	
	Exaltation	genuine	

3. Expand the following Compound Nouns - a. Water supply. b. Object recognition. c. Steam turbine

Course Outcome 2 (CO2)

1. Read the passage below and prepare notes:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as in poetry. What is best in mathematics deserves not merely to be learnt as a task, but to be assimilated as a part of daily thought, and brought again and again before the mind with everrenewed encouragement. Real life is, to most men, a long second-best, a perpetual compromise between the ideal and the possible; but the world of pure reason knows no compromise, no practical limitations, no barrier to the creative activity embodying in splendid edifices the passionate aspiration after the perfect from which all great work springs. Remote from human passions, remote even from the pitiful facts of nature, the generations have gradually created an ordered cosmos, where pure thought can dwell as in its natural home, and where one, at least, of our nobler impulses can escape from the dreary exile of the actual world.

So little, however, have mathematicians aimed at beauty, that hardly anything in their work has had this conscious purpose. Much, owing to irrepressible instincts, which were better than avowed

beliefs, has been moulded by an unconscious taste; but much also has been spoilt by false notions of what was fitting. The characteristic excellence of mathematics is only to be found where the reasoning is rigidly logical: the rules of logic are to mathematics what those of structure are to architecture. In the most beautiful work, a chain of argument is presented in which every link is important on its own account, in which there is an air of ease and lucidity throughout, and the premises achieve more than would have been thought possible, by means which appear natural and inevitable. Literature embodies what is general in particular circumstances whose universal significance shines through their individual dress; but mathematics endeavours to present whatever is most general in its purity, without any irrelevant trappings.

How should the teaching of mathematics be conducted so as to communicate to the learner as much as possible of this high ideal? Here experience must, in a great measure, be our guide; but some maxims may result from our consideration of the ultimate purpose to be achieved.

- From "On the teaching of mathematics" Bertrand Russell
- 2. Enumerate the advantages and disadvantages of speed reading. Discuss how it can impact comprehension.

Course Outcome 3(CO3):

- 1. What are the key elements of a successful presentation?
- 2. Elucidate the importance of non-verbal communication in making a presentation
- **3.** List out the key components in a technical presentation.

Course Outcome 4 (CO4):

- 1. Discuss: 'In today's world, being a good listener is more important than being a good Speaker.'
- 2. Listen to a video/live group discussion on a particular topic, and prepare a brief summary of the proceedings.
- 3. List the do's and don'ts in a group discussion.

Course Outcome 5 (CO5):

- 1. Watch a movie clip and write the subtitles for the dialogue.
- 2. What do you mean by barriers to effective listening? List ways to overcome each of these.
- **3.** What are the different types of interviews? How are listening skills particularly important in Skype/telephonic interviews?

Course Outcome 6 (CO6):

- **1.** Explain the basic structure of a technical report.
- 2. You have been offered an internship in a much sought-after aerospace company and are very excited about it. However, the dates clash with your series tests. Write a letter to the Manager University Relations of the company asking them if they can change the dates to coincide with your vacation.
- 3. You work in a well-reputed aerospace company as Manager University Relations. You are in charge of offering internships. A student has sent you a letter requesting you to change the dates allotted to him since he has series exams at that time. But there are no vacancies available during the period he has requested for. Compose an e-mail informing him of this and suggest that he try to arrange the matter with his college.

Syllabus

Module 1

Use of language in communication: Significance of technical communication Vocabulary Development: technical vocabulary, vocabulary used in formal letters/emails and reports, sequence words, misspelled words, compound words, finding suitable synonyms, paraphrasing, verbal analogies. Language Development: subject-verb agreement, personal passive voice, numerical adjectives, embedded sentences, clauses, conditionals, reported speech, active/passive voice.

Technology-based communication: Effective email messages, slide presentations, editing skills using software. Modern day research and study skills: search engines, repositories, forums such as Git Hub, Stack Exchange, OSS communities (MOOC, SWAYAM, NPTEL), and Quora; Plagiarism

Module 2

Reading, Comprehension, and Summarizing: Reading styles, speed, valuation, critical reading, reading and comprehending shorter and longer technical articles from journals, newspapers, identifying the various transitions in a text, SQ3R method, PQRST method, speed reading. Comprehension: techniques, understanding textbooks, marking and underlining, Note-taking: recognizing non-verbal cues.

Module 3

Oral Presentation: Voice modulation, tone, describing a process, Presentation Skills: Oral presentation and public speaking skills, business presentations, Preparation: organizing the material, self-Introduction, introducing the topic, answering questions, individual presentation practice, presenting visuals effectively.

Debate and Group Discussions: introduction to Group Discussion (GD), differences between GD and debate; participating GD, understanding GD, brainstorming the topic, questioning and clarifying, GD strategies, activities to improve GD skills

Module 4

Listening and Interview Skills Listening: Active and Passive listening, listening: for general content, to fill up information, intensive listening, for specific information, to answer, and to understand. Developing effective listening skills, barriers to effective listening, listening to longer technical talks, listening to classroom lectures, talks on engineering /technology, listening to documentaries and making notes, TED talks.

Interview Skills: types of interviews, successful interviews, interview etiquette, dress code, body language, telephone/online (skype) interviews, one-to-one interview & panel interview, FAQs related to job interviews

Module 5

Formal writing: Technical Writing: differences between technical and literary style. Letter Writing (formal, informal and semi formal), Job applications, Minute preparation, CV preparation (differences between Bio-Data, CV and Resume), and Reports. Elements of style, Common Errors in Writing: describing a process, use of sequence words, Statements of Purpose, Instructions, Checklists.

Analytical and issue-based Essays and Report Writing: basics of report writing; Referencing Style (IEEE Format), structure of a report; types of reports, references, bibliography.

Lab Activities

Written: Letter writing, CV writing, Attending a meeting and Minute Preparation, Vocabulary Building

Spoken: Phonetics, MMFS (Multimedia Feedback System), Mirroring, Elevator Pitch, telephone etiquette, qualities of a good presentation with emphasis on body language and use of visual aids. **Listening:** Exercises based on audio materials like radio and podcasts. Listening to Song. practice and exercises.

Reading: Speed Reading, Reading with the help of Audio Visual Aids, Reading Comprehension Skills **Mock interview and Debate/Group Discussion:** concepts, types, Do's and don'ts- intensive practice

Reference Books

- 1. English for Engineers and Technologists (Combined edition, Vol. 1 and 2), Orient Blackswan 2010.
- 2. Meenakshi Raman and Sangeetha Sharma,"Technical Communication: Principles and Practice", 2nd Edition, Oxford University Press, 2011
- 3. Stephen E. Lucas, "The Art of Public Speaking", 10th Edition; McGraw Hill Education, 2012.
- 4. Ashraf Rizvi, "Effective Technical Communication", 2nd Edition, McGraw Hill Education, 2017.
- 5. William Strunk Jr. & E.B. White, "The Elements of Style", 4th Edition, Pearson, 1999.
- 6. David F. Beer and David McMurrey, Guide to writing as an Engineer, John Willey. New York, 2004.
- 7. Goodheart-Willcox, "Professional Communication", First Edition, 2017.
- Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India, 6 edition, 2015.
- 9. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.
- 10. Anand Ganguly, "Success in Interview", RPH, 5th Edition, 2016.
- 11. Raman Sharma, "Technical Communications", Oxford Publication, London, 2004.

PHT	ENGINEERING PHYSICS A	CATEGORY	L	Т	Ρ	CREDIT	YEAR OF
100	(FOR CIRCUIT BRANCHES)						INTRODUCTION
		BSC	3	1	0	4	2019

Preamble: The aim of the Engineering Physics Program is to offer students a solid background in the fundamentals of Physics and to impart that knowledge in engineering disciplines. The program is designed to develop scientific attitudes and enable the students to correlate the concepts of Physics with the core programmes

Prerequisite: Higher secondary level Physics, Mathematical course on vector calculus, differential equations and linear algebra

Course Outcomes: After the completion of the course the student will be able to

CO 1	Compute the quantitative aspects of waves and oscillations in engineering systems.
CO 2	Apply the interaction of light with matter through interference, diffraction and identify
	these phenomena in different natural optical processes and optical instruments.
CO 3	Analyze the behaviour of matter in the atomic and subatomic level through the principles of
	quantum mechanics to perceive the microscopic processes in electronic devices.
CO 4	Classify the properties of magnetic materials and apply vector calculus to static magnetic
	fields and use Maxwell's equations to diverse engineering problems
CO 5	Analyze the principles behind various superconducting applications, explain the working of
	solid state lighting devices and fibre optic communication system

Mapping of course outcomes with program outcomes

\square	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2		0		19		1	2			1
CO 2	3	2						1	2			1
CO 3	3	2				-		1	2			1
CO 4	3	1			1.00	2020	1	1	2			1
CO 5	3	1				-		1	2			1

Assessment Pattern

	Continuous Asse	essment Tests			
Bloom's Category	Test 1	Test 2	End Semester Examination		
	(Marks)	(Marks)	(Marks)		
Remember	15	15	30		
Understand	25	25	50		
Apply	10	10	20		

Analyse		
Evaluate		
Create		

Mark distribution

Attendance	: 10	marks
Continuous Assessment Test (2 numbers)	: 25	marks
Assignment/Quiz/Course project	: 15	marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Explain the effect of damping force on oscillators.
- 2. Distinguish between transverse and longitudinal waves.
- 3. (a) Derive an expression for the fundamental frequency of transverse vibration in a stretched string.
 - (b) Calculate the fundamental frequency of a string of length 2 m weighing 6 g kept stretched by a load of 600 kg.

Course Outcome 2 (CO2):

- 1. Explain colours in thin films.
- 2. Distinguish between Fresnel and Fraunhofer diffraction.
- 3. (a) Explain the formation of Newton's rings and obtain the expression for radii of bright and dark rings in reflected system. Also explain how it is used to determine the wavelength of a monochromatic source of light.
 - (b) A liquid of refractive index μ is introduced between the lens and glass plate.

What happens to the fringe system? Justify your answer.

Course Outcome 3 (CO3):

- 1. Give the physical significance of wave function ?
- 2. What are excitons ?
- 3. (a) Solve Schrodinger equation for a particle in a one dimensional box and obtain its energy eigen values and normalised wave functions.
- (b) Calculate the first three energy values of an electron in a one dimensional box of width $1 A^0$ in electron volt.

Course Outcome 4 (CO4):

- 1. Compare displacement current and conduction current.
- 2. Mention any four properties of ferro magnetic materials.
- 3. (a) Starting from Maxwell's equations, derive the free space electromagnetic wave equation and show that velocity of electromagnetic wave is $1/(\mu_0 \epsilon_0)^{\frac{14}{2}}$

(b) An electromagnetic wave is described by $E = 100 \exp 8\pi i [10^{14} t - (10^6 z / 3)] V/m$. Find the direction of propagation of the wave,speed of the wave and magnetic flux density in the wave.

Course Outcome 5 (CO5):

- 1. Explain the working of a solar cell.
- 2. Distinguish between Type I and Type II super conductors.
- 3. (a) Define numerical aperture and derive an expression for it.
 - (b) Explain the working of intensity modulated fibre optic sensor.

QP CODE:	PAGES:3
Reg No:	
Name :	
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY F MONTH 8 <i>Course Code</i>	IRST SEMESTER B.TECH DEGREE EXAMINATION, & YEAR : <i>PHT 100</i>
Max Markey 100	Duration: 2 Hours
Max. Marks: 100	Duration: 5 hours
PART	Α
Answer all Questions. Each	question carries 3 Marks
1. Compare electrical and mechanical oscillators	
2. Distinguish between longitudinal and transverse v	vaves
3. Write a short note on antireflection coating.	
4. Diffraction of light is not as evident in daily experi	ence as that of sound waves. Give reason.
5. State and explain Heisenberg's Uncertainty princip	ble. With the help of it explain natural
line broadening.	9. W. 7
6. Explain surface to volume ratio of nanomaterials.	
7. State Faraday's laws of electromagnetic induction	
8. Compare displacement current and conduction c	urrent
9. List four important applications of superconducto	rs.
10. Give the working principle of LED.	(10x3=30)
PART	В

Answer any one full question from each module. Each question carries 14 Marks

Module 1

- 11. (a) Derive the differential equation of damped harmonic oscillator and deduce its solution. Discuss the cases of over damped, critically damped and under damped cases. (10)
 - (b) The frequency of a tuning fork is 500 Hz and its Q factor is 7×10^{4} . Find the relaxation time. Also calculate the time after which its energy becomes 1/10 of its initial undamped value.(4)
- 12. (a) Derive an expression for the velocity of propagation of a transverse wave in a stretched string. Deduce laws of transverse vibrations. (10)
- (b) The equation of transverse vibration of a stretched string is given by y =0.00327 sin (72.1x-2.72t)m, in which the numerical constants are in S.I units. Evaluate (i) Amplitude (ii) Wavelength (iii) Frequency and (iv)Velocity of the wave.

Module 2

- 13.(a)Explain the formation of Newton's rings and show that the radius of dark ring is proportional to the square root of natural numbers. How can we use Newton's rings experiment to determine the refractive index of a liquid.
 (10)
- (b) Two pieces of plane glass are placed together with a piece of paper between two at one end. Find the angle of the wedge in seconds if the film is viewed with a monochromatic light of wavelength 4800Å. Given $\beta = 0.0555$ cm. (4)
- 14. (a) Explain the diffraction due to a plane transmission grating. Obtain the grating equation. (10)
 - (b) A grating has 6000 lines per cm. Find the angular separation of the two yellow lines of mercury of wavelengths 577 nm and 579 nm in the second order. (4)

Module 3

15.(a) Derive time dependent and independent Schrodinger equations.	(10)
	(- <i>i</i>

- (b) An electron is confined to one dimensional potential box of length 2Å. Calculate the energies corresponding to the first and second quantum states in eV. (4)
- 16.(a) Classify nanomaterials based on dimensionality of quantum confinement and explain the following nanostructures. (i) nano sheets (ii) nano wires (iii) quantum dots. (10)
 - (b) Find the de Broglie wavelength of electron whose kinetic energy is 15 eV. (4)

Module 4

17.(a) State Poynting's Theorem. Calculate the value of Poynting vector at the surface of the sun if the power radiated by the sun is 3.8×10^{26} W and its radius is 7×10^{8} m. (5)

- (b) Distinguish between paramagnetic, diamagnetic and ferromagnetic materials. (9)
- 18.(a) Starting from Maxwell's Equations, derive electromagnetic wave equations in free space. (10)
 - (b) If the magnitude of **H** in a plane wave is 1 A/m, find the magnitude of **E** in free space. (4)

Module 5

- 19.(a) Show that superconductors are perfect diamagnets. Distinguish between Type I and
 - Type II superconductors with suitable examples. (10)
 - (b) Write a short note on high temperature superconductors. (4)
- 20.(a) Define numerical aperture of an optic fibre and derive an expression for the NA of a step index fibre with a neat diagram. (10)
 - (b) Calculate the numerical aperture and acceptance angle of a fibre with a core refractive index of 1.54 and a cladding refractive index of 1.50 when the fibre is inside water of refractive index 1.33. (4)

Syllabus

ENGINEERING PHYSICS A (FOR CIRCUIT BRANCHES)

Module 1

Oscillations and Waves

Harmonic oscillations, Damped harmonic motion-Derivation of differential equation and its solution, Over damped, Critically damped and Under damped Cases, Quality factor-Expression, Forced oscillations-Differential Equation-Derivation of expressions for amplitude and phase of forced oscillations, Amplitude Resonance-Expression for Resonant frequency, Quality factor and Sharpness of Resonance, Electrical analogy of mechanical oscillators

Wave motion- Derivation of one dimensional wave equation and its solution, Three dimensional wave equation and its solution (no derivation), Distinction between transverse and longitudinal waves, Transverse vibration in a stretched string, Statement of laws of vibration

Module 2

Wave Optics

Interference of light-Principle of superposition of waves, Theory of thin films - Cosine law (Reflected system), Derivation of the conditions of constructive and destructive Interference, Interference due to wedge shaped films -Determination of thickness and test for optical planeness, Newton's rings - Measurement of wavelength and refractive index, Antireflection coatings

Diffraction of light, Fresnel and Fraunhofer classes of diffraction, Diffraction grating-Grating equation, Rayleigh criterion for limit of resolution, Resolving and Dispersive power of a grating with expression (no derivation)

Module 3

Quantum Mechanics & Nanotechnology

Introduction for the need of Quantum mechanics, Wave nature of Particles, Uncertainty principle, Applications-Absence of electrons inside a nucleus and Natural line broadening mechanism, Formulation of time dependent and independent Schrodinger wave equations-Physical meaning of wave function, Particle in a one dimensional box- Derivation for normalised wave function and energy eigen values, Quantum Mechanical Tunnelling (Qualitative)

Introduction to nanoscience and technology, Increase in surface to volume ratio for nanomaterials, Quantum confinement in one dimension, two dimension and three dimension-Nano sheets, Nano wires and Quantum dots, Properties of nanomaterials-mechanical, electrical and optical, Applications of nanotechnology (qualitative ideas)

Module 4

Magnetism & Electro Magnetic Theory

Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux density, Ampere's Circuital law, Faraday's law in terms of EMF produced by changing magnetic flux, Magnetic permeability and susceptibility, Classification of magnetic materials-para, dia and ferromagnetic materials

Fundamentals of vector calculus, concept of divergence, gradient and curl along with physical significance, Line, Surface and Volume integrals, Gauss divergence theorem & Stokes' theorem, Equation of continuity, Derivation of Maxwell's equations in vacuum, Comparison of displacement current with conduction current. Electromagnetic waves, Velocity of Electromagnetic waves in free space, Flow of energy and Poynting's vector (no derivation)

Module 5

Superconductivity & Photonics

Superconducting phenomena, Meissner effect and perfect diamagnetism, Types of superconductors-Type I and Type II, BCS Theory (Qualitative), High temperature superconductors-Applications of super conductivity

Introduction to photonics-Photonic devices-Light Emitting Diode, Photo detectors -Junction and PIN photodiodes, Solar cells-I-V Characteristics, Optic fibre-Principle of propagation of light, Types of fibres-Step index and Graded index fibres, Numerical aperture –Derivation, Fibre optic communication system (block diagram), Industrial, Medical and Technological applications of optical fibre, Fibre optic sensors-Intensity Modulated and Phase modulated sensors.

Text Books

- 1. M.N.Avadhanulu, P.G.Kshirsagar, TVS Arun Murthy "A Text book of Engineering Physics", S.Chand & Co., Revised Edition 2019
- 2. H.K.Malik , A.K. Singh, "Engineering Physics" McGraw Hill Education, Second Edition 2017

Reference Books

- 1. Arthur Beiser, "Concepts of Modern Physics ", Tata McGraw Hill Publications, 6th Edition 2003
- 2. D.K. Bhattacharya, Poonam Tandon, "Engineering Physics", Oxford University Press, 2015
- 3. Md.N.Khan & S.Panigrahi "Principles of Engineering Physics 1&2", Cambridge University Press, 2016
- 4. Aruldhas G., "Engineering Physics", PHI Pvt. Ltd., 2015
- 5. Ajoy Ghatak, "Optics", Mc Graw Hill Education, Sixth Edition, 2017
- 6. T. Pradeep, "Nano:The Essentials", McGraw Hill India Ltd, 2007
- 7. Halliday, Resnick, Walker, "Fundamentals of Physics", John Wiley & Sons.Inc, 2001
- David J Griffiths, "Introduction to Electrodynamics", Addison-Wesley publishing, 3rd Edition, 1999
- 9. Premlet B., "Advanced Engineering Physics", Phasor Books,10th edition,2017
- I. Dominic and. A. Nahari, "A Text Book of Engineering physics", Owl Books Publishers, Revised edition, 2016

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Oscillations and Waves (9 hours)	
1.1	Harmonic oscillations, Damped harmonic motion-Derivation of differential equation and its solution, Over damped, Critically damped and Under damped Cases, Quality factor-Expression	2 hrs
1.2	Forced oscillations-Differential Equation-Derivation of expressions for amplitude and phase of forced oscillations, Amplitude Resonance- Expression for Resonant frequency, Quality factor and Sharpness of Resonance, Electrical analogy of mechanical oscillators	3hrs
1.3	Wave motion- Derivation of one dimensional wave equation and its solution, Three dimensional wave equation and its solution (no derivation)	2 hrs
1.4	Distinction between transverse and longitudinal waves. Transverse vibration in a stretched string, Statement of laws of vibration	2 hrs
2	Wave Optics (9 hours)	
2.1	Interference of light-Principle of superposition of waves, Theory of thin films - Cosine law (Reflected system), Derivation of the conditions of constructive and destructive Interference	2 hrs
2.2	Interference due to wedge shaped films -Determination of thickness and test for optical planeness, Newton's rings - Measurement of wavelength and refractive index, Antireflection coatings	4 hr
2.3	Diffraction of light, Fresnel and Fraunhofer classes of diffraction, Diffraction grating-Grating equation	2 hrs
2.4	Rayleigh criterion for limit of resolution, Resolving and Dispersive power of a grating with expression (no derivation)	1 hr
3	Quantum Mechanics & Nanotechnology (9hours)	
3.1	Introduction for the need of Quantum mechanics, Wave nature of Particles, Uncertainty principle, Applications-Absence of electrons inside a nucleus and Natural line broadening mechanism	2 hrs
3.2	Formulation of time dependent and independent Schrodinger wave equations-Physical Meaning of wave function, Particle in a one dimensional box- Derivation for normalised wave function and energy eigen values, Quantum Mechanical Tunnelling (Qualitative)	4 hrs
3.3	Introduction to nanoscience and technology, Increase in surface to volume ratio for nanomaterials, Quantum confinement in one dimension, two dimension and three dimension-Nano sheets, Nano wires and Quantum dots	2 hrs
3.4	Properties of nanomaterials-mechanical, electrical and optical Applications of nanotechnology (qualitative ideas)	1 hr
4	Magnetism & Electro Magnetic Theory (9 hours)	1
4.1	Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux	2 hrs

	density, Ampere's Circuital law, Faraday's law in terms of EMF					
	produced by changing magnetic flux					
4.2	Explanation for Magnetic permeability and susceptibility Classification 1 hr					
	of magnetic materials- para, dia and ferromagnetic materials	of magnetic materials- para, dia and ferromagnetic materials				
4.3	Fundamentals of vector calculus, concept of divergence, gradient and		2 hrs			
	curl along with physical significance, Line, Surface and Volume integrals,					
	Gauss divergence theorem & Stokes' theorem					
4.4	Equation of continuity, Derivation of Maxwell's equations in vacuum,	1	4 hrs			
	Comparison of displacement current with conduction current.					
	Electromagnetic waves, Velocity of Electromagnetic waves in free					
	space, Flow of energy and Poynting's vector (no derivation)					
5	Superconductivity & Photonics (9hours)					
5.1	Super conducting Phenomena, Meissner effect and perfect 2 hrs					
	diamagnetism, Types of superconductors-Type I and Type II					
5.2	BCS Theory (Qualitative), High temperature superconductors,		2 hrs			
	Applications of super conductivity					
5.3	Introduction to photonics-Photonic devices-Light Emitting Diode, Photo		2 hrs			
	detectors -Junction and PIN photodiodes, Solar cells-I-V Characteristics					
5.4	Optic fibre-Principle of propagation of light, Types of fibres-Step index		3 hrs			
	and Graded index fibres, Numerical aperture –Derivation, Fibre optic					
	communication system (block diagram), Industrial, Medical and					
	Technological applications of optical fibre, Fibre optic sensors-Intensity					
	Modulated and Phase modulated sensors					

	LINEAR ALGEBRA AND CALCULUS	CATEGORY	L	Т	Ρ	CREDIT	Year of
MAT							Introduction
101		BSC	3	1	0	4	2019

Preamble: This course introduces students to some basic mathematical ideas and tools which are at the core of any engineering course. A brief course in Linear Algebra familiarises students with some basic techniques in matrix theory which are essential for analysing linear systems. The calculus of functions of one or more variables taught in this course are useful in modelling and analysing physical phenomena involving continuous change of variables or parameters and have applications across all branches of engineering.

Prerequisite: A basic course in one-variable calculus and matrix theory.

Course Outcomes: After the completion of the course the student will be able to

CO 1	solve systems of linear equations, diagonalize matrices and characterise quadratic forms
CO 2	compute the partial and total derivatives and maxima and minima of multivariable functions
CO 3	compute multiple integrals and apply them to find areas and volumes of geometrical shapes,
	mass and centre of gravity of plane laminas
CO 4	perform various tests to determine whether a given series is convergent, absolutely
	convergent or conditionally convergent
CO 5	determine the Taylor and Fourier series expansion of functions and learn their applications.

Mapping of course outcomes with program outcomes

	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO	PO 8	PO 9	PO 10	PO 11	PO 12
	1			1			7		1			
CO 1	3	3	3	3	2	1			1	2		2
CO 2	3	3	3	3	2	1			1	2		2
CO 3	3	3	3	3	2	1			1	2		2
CO 4	3	2	3	2	1	1			1	2		2
CO 5	3	3	3	3	2	1			1	2		2

Assessment Pattern

Bloom's Category	Continuous Asse	End Semester	
	Test 1 (Marks)	Test 2 (Marks)	Examination (Marks)
Remember	10	10	20
Understand	20	20	40
Apply	20	20	40
Analyse			
Evaluate			
Create			

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration	
150	50	100	3 hours	

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

Assignments: Assignment should include specific problems highlighting the applications of the methods introduced in this course in science and engineering.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Solve systems of linear equations, diagonalize matrices and characterise quadratic forms

1. A is a real matrix of order 3×3 and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. What can you say about the solution of AX =

Oif rank of A is 1? 2 ?3?

- 2. Given $A = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 2 & 0 \\ -2 & 0 & 0 \end{bmatrix}$, find an orthogonal matrix *P* that diagonalizes A.
- 3. Find out what type of conic section the following quadratic form represents

$$17x^2 - 30x_1x_2 + 17x_2^2 = 128$$

4. The matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ has an eigen value5 with corresponding Eigen vector $X = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$. Find $A^5 X$

Course Outcome 2 (CO2): compute the partial and total derivatives and maxima and minima of multivariable functions

1. Find the slope of the surface $z = x^2y + 5y^3$ in the x-direction at the point (1,-2)

- 2. Given the function w = xy + z, use chain rule to find the instantaneous rate of change of wat each point along the curve x = cost, y = sint, z = t
- **3.** Determine the dimension of rectangular box open at the top , having a volume 32 cubic ft and requiring the least amount of material for it's construction.

Course Outcome 3(CO3): compute multiple integrals and apply them to find areas and volumes of geometrical shapes, mass and centre of gravity of plane laminas.

- 1. Evaluate $\iint_D (x + 2y) DA$ where D is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$
- 2. Explain how you would find the volume under the surface z = f(x, y) and over a specific region *D* in the *xy* plane using (i) double integral (ii) triple integral?
- 3. Find the mass and centre of gravity of a triangular lamina with vertices (0,0), (2,1), (0,3) if the density function is f(x, y) = x + y
- 4. Use spherical coordinates to evaluate $\iiint_B (x^2 + y^2 + z^2)^3 dV$ where B is the unit ball defined by $B = \{(x, y, z): x^2 + y^2 + z^2 \le 1\}$

Course Outcome 4 (CO4): perform various tests to determine whether a given series is convergent, absolutely convergent or conditionally convergent.

- 1. What is the difference between a sequence and a series and when do you say that they are convergent? Divergent?
- 2. Determine whether the series $\sum_{n=1}^{n=\infty} \frac{5}{2n^2+4n+3}$ converges or diverges.
- 3. Is the series $\sum_{n=1}^{n=\infty} \frac{(-1)^{n-1}}{n}$ convergent? Absolutely convergent? Conditionally convergent?

Course Outcome 5 (CO5): determine the Taylor and Fourier series expansion of functions and learn their applications.

1. Assuming the possibility of expansion find the Maclaurin series expansion of

 $f(x) = (1 + x)^k$ for |x| < 1 where k is any real number. What happens if k is a positive

integer?

- 2. Use Maclaurin series of ln(1 + x), $-1 < x \le 1$ to find an approximate value of ln2.
- 3. Find the Fourier series of the function $f(x) = x^2, -2 \le x < 2, f(x + 4) = f(x)$. Hence using Parseval's identity prove that $1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$
- 4. Expand the function f(x) = x (0 < x < 1/2) into a (i) Fourier sine series (ii) Fourier cosine series.

g No: me : J ABDU	PAGES:3
g No: me : ' J ABDU ı x. Mar l	UL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR Course Code: MAT 101 ks: 100 Duration: 3 Hours LINEAR ALGEBRA AND CALCULUS (2019-Scheme) (Common to all branches)
me : 'J ABDU	UL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR Course Code: MAT 101 ks: 100 Duration: 3 Hours LINEAR ALGEBRA AND CALCULUS (2019-Scheme) (Common to all branches)
9 ABDU	UL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR Course Code: MAT 101 ks: 100 Duration: 3 Hours LINEAR ALGEBRA AND CALCULUS (2019-Scheme) (Common to all branches)
	(2019-Scheme) (Common to all branches) PART A
	(Common to all branches)
	PARTA
	(Answer all questions, each question carries 3 marks)
1. De 2. W	etermine the rank of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \\ 3 & 6 & -3 \end{bmatrix}$. Write down the eigen values of $= \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$. What are the eigen values of $P^{-1}AP$ where $= \begin{bmatrix} -4 & 2 \\ 2 \end{bmatrix}_2$
3. Fir	I 3 -1] ¹ nd $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x, y) = 2x^3y^2 + 2y + 4x$.
4. Sh	how that the function $u(x,t) = \sin(x-ct)$ is a solution of the equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$
5. Us	se double integral to find the area of the region enclosed between the parabolas $y = \frac{1}{2}x^2$
an 6. Us <i>y</i>	nd the line $y = 2x$. se polar coordinates to evaluate the area of the region bounded by $x^2 + y^2 = 4$, the line = x and the y axis in the first quadrant
7. Te	est the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$.
8. Te	est the convergence of the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ using Leibnitz test.
9. Fir	nd the Taylor series expansion of $sin\pi x$ about $x = \frac{1}{2}$.
10. Fi	ind the values to which the Fourier series of
f	$f(x) = x \text{ for} - \pi < x < \pi$, with $f(x + 2\pi) = f(x)$ converges (10x3=30)

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -I

- 11. (a) Solve the following system of equations
- y + z 2w = 0 2x 3y 3z + 6w = 2 4x + y + z 2w = 4(b) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ 12. (a) Diagonalize the matrix $\begin{bmatrix} -1 & 2 & -2 \\ 2 & 4 & 1 \\ 2 & 1 & 4 \end{bmatrix}$ (b) What kind of conic parts with
 - (b) What kind of conic section the quadratic form $3x_1^2 + 22x_1x_2 + 3x_2^2 = 0$ represents? Transform it to principal axes.

Module - II

13. (a) Find the local linear approximation to $f(x, y) = \sqrt{x^2 + y^2}$ at the point (3, 4). Use it to approximate f(3.04, 3.98)

(b) Let $w = \sqrt{x^2 + y^2 + z^2}$, $x = \cos\theta$, $y = \sin\theta$, $z = \tan\theta$. Use chain rule to find $\frac{dw}{d\theta}$ when $\theta = \frac{\pi}{4}$.

14. (a) Let z = f(x, y) where $x = r\cos\theta$, $y = r\sin\theta$, prove that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$. (b) Locate all relative maxima, relative minima and saddle points $f(x, y) = xy + \frac{a^3}{x} + \frac{b^3}{y} (a \neq 0, b \neq 0)$.

Module - III

- 15. (a) Evaluate $\iint_D (2x^2y + 9y^3) dxdy$ where D is the region bounded by $y = \frac{2}{3}x$ and $y = 2\sqrt{x}$ (b) Evaluate $\int_0^4 \int_{\sqrt{y}}^2 e^{x^3} dxdy$ changing the order of integration.
- 16. (a) Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.
 - (b) Evaluate $\iiint \sqrt{1 x^2 y^2 z^2} dx dy dz$, taken throughout the volume of the sphere $x^2 + y^2 + z^2 = 1$, by transforming to spherical polar coordinates

Module - IV

17. (a) Test the convergence of the series

(i)
$$\sum_{k=1}^{\infty} \frac{k^k}{k!}$$
 (ii) $\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1}\right)^k$

(b) Determine the convergence or divergence of the series $\sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)!}{3^k}$

18. (a) Check whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(3k-2)!}$ is absolutely convergent, conditionally convergent or divergent.

(b) Test the convergence of the series $1 + \frac{1.2}{1.3} + \frac{1.2.3}{1.3.5} + \frac{1.2.3.4}{1.3.5.7} + \cdots$

Module - V

- 19. (a) Obtain the Fourier series of for $f(x) = e^{-x}$, in the interval $0 < x < 2\pi$ with $f(x + 2\pi) = f(x)$. Hence deduce the value of $\sum_{n=2}^{\infty} \frac{(-1)^n}{1+n^2}$. (b) Find the half range sine series of $f(x) = \begin{cases} \frac{2kL}{x} & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k(L-x)}{L} & \text{if } \frac{L}{2} < x < L \end{cases}$
- 20. (a)Expand $(1 + x)^{-2}$ as a Taylor series about x = 0 and state the region of convergence of the series.
- (b) Find the Fourier series for $f(x) = x^2$ in the interval $-\pi < x < \pi$

with
$$f(x + 2\pi) = f(x)$$
. Hence show that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$. (14X5=70)

Syllabus

Module 1 (Linear algebra)

(Text 2: Relevant topics from sections 7.3, 7.4, 7.5, 8.1,8.3,8.4)

Systems of linear equations, Solution by Gauss elimination, row echelon form and rank of a matrix, fundamental theorem for linear systems (homogeneous and non-homogeneous, without proof), Eigen values and eigen vectors. Diagonaliztion of matrices, orthogonal transformation, quadratic forms and their canonical forms.

Module 2 (multivariable calculus-Differentiation)

(Text 1: Relevant topics from sections 13.3, 13.4, 13.5, 13.8)

Concept of limit and continuity of functions of two variables, partial derivatives, Differentials, Local Linear approximations, chain rule, total derivative, Relative maxima and minima, Absolute maxima and minima on closed and bounded set.

Module 3(multivariable calculus-Integration)

(Text 1: Relevant topics from sections 14.1, 14.2, 14.3, 14.5, 14.6, 14.8)

Double integrals (Cartesian), reversing the order of integration, Change of coordinates (Cartesian to polar), finding areas and volume using double integrals, mass and centre of gravity of inhomogeneous laminas using double integral. Triple integrals, volume calculated as triple integral, triple integral in cylindrical and spherical coordinates (computations involving spheres, cylinders).

Module 4 (sequences and series)

(Text 1: Relevant topics from sections 9.1, 9.3, 9.4, 9.5, 9.6)

Convergence of sequences and series, convergence of geometric series and p-series(without proof), test of convergence (comparison, ratio and root tests without proof); Alternating series and Leibnitz test, absolute and conditional convergence.

Module 5 (Series representation of functions)

(Text 1: Relevant topics from sections 9.8, 9.9. Text 2: Relevant topics from sections 11.1, 11.2, 11.6)

Taylor series (without proof, assuming the possibility of power series expansion in appropriate domains), Binomial series and series representation of exponential, trigonometric, logarithmic functions (without proofs of convergence); Fourier series, Euler formulas, Convergence of Fourier series (without proof), half range sine and cosine series, Parseval's theorem (without proof).

Text Books

- 1. H. Anton, I. Biven, S. Davis, "Calculus", Wiley, 10th edition, 2015.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10thEdition, John Wiley & Sons, 2016.

Reference Books

- 1. J. Stewart, Essential Calculus, Cengage, 2nd edition, 2017
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearson, Reprint, 2002.
- 3. Peter V. O'Neil, Advanced Engineering Mathematics , Cengage, 7th Edition, 2012
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 Edition, 2010.

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Linear Algebra (10 hours)	
1.1	Systems of linear equations, Solution by Gauss elimination	1
1.2	Row echelon form, finding rank from row echelon form, fundamental theorem for linear systems	3
1.3	Eigen values and eigen vectors	2
1.4	Diagonaliztion of matrices, orthogonal transformation, quadratic forms	4

	and their canonical forms.	
2	Multivariable calculus-Differentiation (8 hours)	
2.1	Concept of limit and continuity of functions of two variables, partial derivatives	2
2.2	Differentials, Local Linear approximations	2
2.3	Chain rule, total derivative	2
2.4	Maxima and minima	2
3	Multivariable calculus-Integration (10 hours)	
3.1	Double integrals (Cartesian)-evaluation	2
3.2	Change of order of integration in double integrals, change of coordinates (Cartesian to polar),	2
3.3	Finding areas and volumes, mass and centre of gravity of plane laminas	3
3.4	Triple integrals	3
4	Sequences and series (8 hours)	
4.1	Convergence of sequences and series, geometric and p-series	2
4.2	Test of convergence(comparison, ratio and root)	4
4.3	Alternating series and Leibnitz test, absolute and conditional convergence	2
5	Series rep <mark>resentation of functions (9 hours)</mark>	
5.1	Taylor series, Binomial series and series representation of exponential, trigonometric, logarithmic functions;	3
5.2	Fourier series, Euler formulas, Convergence of Fourier series(Dirichlet's conditions)	3
	Helf was a size and assistence in Demously the survey	3

EST 130	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	CATEGORY	L	т	Р	CREDIT	YEAR OF
		ESC	4	0	0	4	2019

Preamble:

This course aims to (1) equip the students with an understanding of the fundamental principles of electrical engineering(2) provide an overview of evolution of electronics, and introduce the working principle and examples of fundamental electronic devices and circuits (3) provide an overview of evolution of communication systems, and introduce the basic concepts in radio communication.

Prerequisite: Physics and Mathematics (Pre-university level)

Course Outcomes: After the completion of the course the student will be able to

CO 1	Apply fundamental concepts and circuit laws to solve simple DC electric circuits							
CO 2	Develop and solve models of magnetic circuits							
CO 3	Apply the fundamental laws of electrical engineering to solve simple ac circuits in steady							
	state							
CO 4	Describe working of a voltage amplifier							
CO 5	Outline the principle of an electronic instrumentation system							
CO 6	Explain the principle of radio and cellular communication							

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	1	-	-	-	-	-	-	-	-	-	2
CO 2	3	1	-	-	-	-	-	-	100	-	-	2
CO 3	3	1	-	-	-	-	-	-	-	-	-	2
CO 4	2	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-			-	-	-	-	-	2
CO 6	2	-	-	-	- 11		-	-	-	-	-	2

Assessment Pattern

	Basic Electrical Engineering			Basic Electronics Engineering			
Bloom's Category	Contin Assessme	nuous ent Tests	End Semester Examination	Continuous Assessmen	s t Tests	End Semester Examination	
	Test 1 (Marks)	Test 2 (Marks)	(Marks)	Test 1 (Marks)	Test 2 (Marks)	(Marks)	
Remember	0	0	10	10	10	20	
Understand	12.5	12.5	20	15	15	30	
Apply	12.5	12.5	20				
Analyse							
Evaluate							
Create							

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	
Continuous Assessment Test (2 numbers)	
Assignment/Quiz/Course project	

End Semester Examination Pattern: There will be two parts; Part I – Basic Electrical Engineering and Part II – Basic Electronics Engineering. Part I and PART II carries 50 marks each. For the end semester examination, part I contain 2 parts - Part A and Part B. Part A contain 5 questions carrying 4 marks each (not exceeding 2 questions from each module). Part B contains 2 questions from each module out of which one to be answered. Each question carries 10 mark and can have maximum 2 subdivisions. The pattern for end semester examination for part II is same as that of part I. **However, student should answer both part I and part 2 in separate answer booklets.**

: 10 marks : 25 marks : 15 marks

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Solve problems based on current division rule.
- 2. Solve problems with Mesh/node analysis.
- 3. Solve problems on Wye-Delta Transformation.

Course Outcome 2 (CO2):

- 1. Problems on series magnetic circuits
- 2. Problems on parallel magnetic circuits
- 3. Problems on composite magnetic ciruits
- 4. Course Outcome 3 (CO3):
- 1. problems on self inductance, mutual inductance and coefficient of coupling
- 2. problems on rms and average values of periodic waveforms
- 3. problems on series ac circuits
- 4. Compare star and Delta connected 3 phase AC systems.

Course Outcome 4 (CO4): Describe working of a voltage amplifier

1. What is the need of voltage divider biasing in an RC coupled amplifier?

2. Define operating point in the context of a BJT amplifier.

3. Why is it required to have a voltage amplifier in a public address system?

Course Outcome 5 (CO5): Outline the principle of an electronic instrumentation system

1. Draw the block diagram of an electronic instrumentation system.

2. What is a transducer?

3. Explain the working principle of operation of digital multimeter.

Course Outcome 6 (CO6): Explain the principle of radio and cellular communication

1. What is the working principle of an antenna when used in a radio transmitter?

2. What is the need of two separate sections RF section and IF section in a super heterodyne receiver?

3. What is meant by a cell in a cellular communication?

Model Question Paper

QP CODE:	Pages:
Reg No.:	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: EST 130

Course Name: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

Max. Marks: 100

Name:

Duration: 3 hours

3

Answer both part I and part 2 in separate answer booklets

PART I

BASIC ELECTRICAL ENGINEERING

PART A

Answer all questions; each question carries 4 marks.

1. Calculate the current through the 4Ω resistor in the circuit shown, applying current division rule:

- 2. Calculate the RMS and average values of a purely sinusoidal current having peak value 15A.
- 3. An alternating voltage of (80+j60)V is applied to an RX circuit and the current flowing through the circuit is (-4+j10)A. Calculate the impedance of the circuit in rectangular and polar forms. Also determine if X is inductive or capacitive.
- 4. Derive the relation between line and phase values of voltage in a three phase star connected system.
- 5. Compare electric and magnetic circuits.

(5x4=20)

PART B

Answer one question from each module; each question carries 10 marks.

Module 1

6. . Calculate the node voltages in the circuit shown, applying node analysis:

7. (a) State and explain Kirchhoff's laws.

(4 marks)

(b) Calculate the current through the galvanometer (G) in the circuit shown:

(6 marks)

Module 2

8. (a) State and explain Faraday's laws of electromagnetic induction with examples. (4 marks)

(b) Differentiate between statically and dynamically induced emf. A conductor of length 0.5m moves in a uniform magnetic field of flux density 1.1T at a velocity of 30m/s. Calculate the emf induced in the conductor if the direction of motion of the conductor is inclined at 60° to the direction of field. (6 marks)

9. (a) Derive the amplitude factor and form factor of a purely sinusoidal waveform. (5 marks)

(b) A current wave is made up of two components-a 5A dc component and a 50Hz ac component, which is a sinusoidal wave with a peak value of 5A. Sketch the resultant waveform and determine its RMS and average values. (5 marks)

Module 3

- 10. Draw the power triangle and define active, reactive and apparent powers in ac circuits. Two coils A and B are connected in series across a 240V, 50Hz supply. The resistance of A is 5Ω and the inductance of B is 0.015H. If the input from the supply is 3kW and 2kVAR, find the inductance of A and the resistance of B. Also calculate the voltage across each coil.
- 11. A balanced three phase load consists of three coils each having resistance of 4Ω and inductance 0.02H. It is connected to a 415V, 50Hz, 3-phase ac supply. Determine the phase voltage, phase current, power factor and active power when the loads are connected in (i) star (ii) delta.

(3x10=30)

PART II

BASIC ELECTRONICS ENGINEERING

PART A

Answer all questions; each question carries 4 marks.

- 1. Give the specifications of a resistor. The colour bands marked on a resistor are Blue, Grey, Yellow and Gold. What are the minimum and maximum resistance values expected from that resistance?
- 2. What is meant by avalanche breakdown?
- 3. Explain the working of a full-wave bridge rectifier.
- 4. Discuss the role of coupling and bypass capacitors in a single stage RC coupled amplifier.
- 5. Differentiate AM and FM communication systems.
PART B

Answer one question from each module; each question carries 10 marks.

Module 4

6.	a) Explain with diagram the principle of operation of an NPN transistor.	(5)
	b) Sketch and explain the typical input-output characteristics of a BJT when connect	ed in
	common emitter configuration. OR	(5)
7.	a) Explain the formation of a potential barrier in a P-N junction diode.	(5)
	b) What do you understand by Avalanche breakdown? Draw and explain the V-I character	ristics
	of a P-N junction and Zener diode.	(5)
	Module 5	
8.	a) With a neat circuit diagram, explain the working of an RC coupled amplifier.	(6)
	b) Draw the frequency response characteristics of an RC coupled amplifier and state the re-	asons
	for the reduction of gain at lower and higher frequencies.	(4)
	OR	
9.	a) With the help of block diagram, explain how an electronic instrumentation system.	(6)
	b) Explain the principle of an antenna.	(4)
	Module 6	
10.	a) With the help of a block diagram, explain the working of Super hetrodyne receiver.	(6)
	b) Explain the importance of antenna in a communication system.	(4)
	OR	
11.	a) With neat sketches explain a cellular communication system.	(5)
	b) Explain GSM communication with the help of a block diagram.	(5)
	(3x10	=30)

SYLLABUS

MODULE 1: Elementary Concepts of Electric Circuits

Elementary concepts of DC electric circuits: Basic Terminology including voltage, current, power, resistance, emf; Resistances in series and parallel; Current and Voltage Division Rules; Capacitors & Inductors: V-I relations and energy stored. Ohms Law and Kirchhoff's laws-Problems; Star-delta conversion (resistive networks only-derivation not required)-problems.

Analysis of DC electric circuits: Mesh current method - Matrix representation - Solution of network equations. Node voltage methods-matrix representation-solution of network equations by matrix methods. Numerical problems.

MODULE 2: Elementary Concepts of Magnetic circuits, Electromagnetic Induction and AC fundamentals

Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - comparison between electric and magnetic circuits- Series and parallel magnetic circuits with composite materials, numerical problems.

Electromagnetic Induction: Faraday's laws, problems, Lenz's law- statically induced and dynamically induced emfs - Self-inductance and mutual inductance, coefficient of coupling

Alternating Current fundamentals: Generation of alternating voltages-Representation of sinusoidal waveforms: frequency, period, Average, RMS values and form factor of waveforms-Numerical Problems.

MODULE 3: AC Circuits

AC Circuits: Phasor representation of sinusoidal quantities. Trignometric, Rectangular, Polar and complex forms. Analysis of simple AC circuits: Purely resistive, inductive & capacitive circuits; Inductive and capacitive reactance, concept of impedance. Average Power Power factor. Analysis of RL, RC and RLC series circuits-active, reactive and apparent power. Simple numerical problems.

Three phase AC systems: Generation of three phase voltages; advantages of three phase systems, star and delta connections (balanced only), relation between line and phase voltages, line and phase currents- Numerical problems

MODULE 4

Introduction to Semiconductor devices: Evolution of electronics – Vacuum tubes to nano electronics. Resistors, Capacitors and Inductors (constructional features not required): types, specifications. Standard values, color coding. PN Junction diode: Principle of operation, V-I characteristics, principle of avalanche breakdown. Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, relation between current gains in CE, CB and CC, input and output characteristics of common emitter configuration.

MODULE 5

Basic electronic circuits and instrumentation: Rectifiers and power supplies: Block diagram description of a dc power supply, Working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator. Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response, Concept of voltage divider biasing. Electronic Instrumentation: Block diagram of an electronic instrumentation system.

MODULE 6

Introduction to Communication Systems: Evolution of communication systems – Telegraphy to 5G. Radio communication: principle of AM & FM, frequency bands used for various communication systems, block diagram of super heterodyne receiver, Principle of antenna – radiation from accelerated charge. Mobile communication: basic principles of cellular communications, principle and block diagram of GSM.

Text Books

1. D P Kothari and I J Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.

2. D C Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2010.

3. ChinmoySaha, Arindham Halder and Debarati Ganguly, Basic Electronics - Principles and Applications, Cambridge University Press, 2018.

4. M.S.Sukhija and T.K.Nagsarkar, Basic Electrical and Electronics Engineering, Oxford University Press, 2012.

5. Wayne Tomasi and Neil Storey, A Textbook On Basic Communication and Information Engineering, Pearson, 2010.

Reference Books

1. Del Toro V, "Electrical Engineering Fundamentals", Pearson Education.

2. T. K. Nagsarkar, M. S. Sukhija, "Basic Electrical Engineering", Oxford Higher Education.

3. Hayt W H, Kemmerly J E, and Durbin S M, "Engineering Circuit Analysis", Tata McGraw-Hill

4. Hughes, "Electrical and Electronic Technology", Pearson Education.

5. V. N. Mittle and Arvind Mittal, "Basic Electrical Engineering," Second Edition, McGraw Hill.

6. Parker and Smith, "Problems in Electrical Engineering", CBS Publishers and Distributors.

7. S. B. Lal Seksena and Kaustuv Dasgupta, "Fundamentals of Electrical Engineering", Cambridge University Press.

8. Anant Agarwal, Jeffrey Lang, Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann Publishers, 2005.

9. Bernard Grob, Ba sic Electronics, McGraw Hill.

10. A. Bruce Carlson, Paul B. Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, Tata McGraw Hill, 5th Edition.

COURSE CONTENTS AND LECTURE SCHEDULE

No	Торіс	No. of Lectures
1	Elementary Concepts of Electric Circuits	I
1.1	Elementary concepts of DC electric circuits: Basic Terminology including voltage, current, power, resistance, emf;	1
	Capacitors & Inductors: V-I relations and energy stored. Ohms Law and Kirchhoff's laws-Problems:	2
	Star-delta conversion (resistive networks only-derivation not required)- problems.	1
1.2	Analysis of DC electric circuits: Mesh current method - Matrix representation - Solution of network equations. Node voltage methods-matrix representation-solution of network	1
	Numerical problems.	2
2	Elementary Concepts of Magnetic circuits, Electromagnetic Infundamentals	duction and AC
2.1	Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - comparison between electric and magnetic circuits-	1
	Series and parallel magnetic circuits with composite materials, numerical problems.	2
2.2	Electromagnetic Induction: Faraday's laws, problems, Lenz's law- statically induced and dynamically induced emfs - Self-inductance and mutual inductance, coefficient of coupling	1 2
2.3	Alternating Current fundamentals: Generation of alternating voltages- Representation of sinusoidal waveforms: frequency, period, Average, RMS values and form factor of waveforms-Numerical Problems.	2
3	AC Circuits	1

3.1	AC Circuits: Phasor representation of sinusoidal quantities. Trigonometric, Rectangular, Polar and complex forms.	1
	Analysis of simple AC circuits: Purely resistive, inductive & capacitive circuits; Inductive and capacitive reactance, concept of impedance. Average Power, Power factor.	2
	Analysis of RL, RC and RLC series circuits-active, reactive and apparent power.	1
	Simple numerical problems.	2
3.2	Three phase AC systems: Generation of three phase voltages; advantages of three phase systems, star and delta connections (balanced only), relation between line and phase voltages, line and phase currents- Numerical problems.	2
4	Introduction to Semiconductor devices	
4.1	Evolution of electronics – Vacuum tubes to nano electronics (In evolutional perspective only)	1
4.2	Resistors, Capacitors and Inductors: types, specifications. Standard values, color coding (No constructional features)	2
4.3	PN Junction diode : Principle of operation, V-I characteristics, principle of avalanche breakdown	2
4.4	Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, relation between current gains in CE, CB and CC, input and output characteristics of common emitter configuration	3
5	Basic electronic circuits and instrumentation	
5.1	Rectifiers and power supplies: Block diagram description of a dc power supply, Working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator	3
5.2	Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response, Concept of voltage divider biasing	4
5.3	Electronic Instrumentation: Block diagram of an electronic instrumentation system	2
6	Introduction to Communication Systems	I
6.1	Evolution of communication systems – Telegraphy to 5G	1

6.2	Radio communication: principle of AM & FM, frequency bands used for	4
	various communication systems, block diagram of super heterodyne	
	receiver, Principle of antenna – radiation from accelerated charge	
6.3	Mobile communication: basic principles of cellular communications,	2
	principle and block diagram of GSM.	

Suggested Simulation Assignments for Basic Electronics Engineering

- 1. Plot V-I characteristics of Si and Ge diodes on a simulator
- 2. Plot Input and Output characteristics of BJT on a simulator
- 3. Implementation of half wave and full wave rectifiers
- 4. Simulation of RC coupled amplifier with the design supplied
- 5. Generation of AM signal

Note: The simulations can be done on open tools such as QUCS, KiCad, GNURadio or similar software to augment the understanding.

EST	BASICS OF CIVIL & MECHANICAL	CATEGORY	L	Т	Ρ	CREDIT	YEAR OF
120	ENGINEERING						INTRODUCTION
		ESC	4	0	0	4	2019

Preamble:

Objective of this course is to provide an insight and inculcate the essentials of Civil Engineering discipline to the students of all branches of Engineering and to provide the students an illustration of the significance of the Civil Engineering Profession in satisfying the societal needs.

To introduce the students to the basic principles of mechanical engineering

Prerequisite: NIL

Course Outcomes: After completion of the course, the student will be able to

CO 1	Recall the role of civil engineer in society and to relate the various disciplines of Civil Engineering.
CO 2	Explain different types of buildings, building components, building materials and building construction
CO 3	Describe the importance, objectives and principles of surveying.
CO 4	Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps
CO 5	Discuss the Materials, energy systems, water management and environment for green buildings.
CO 6	Analyse thermodynamic cycles and calculate its efficiency
CO 7	Illustrate the working and features of IC Engines
CO 8	Explain the basic principles of Refrigeration and Air Conditioning
CO 9	Describe the working of hydraulic machines
CO 10	Explain the working of power transmission elements
CO 11	Describe the basic manufacturing, metal joining and machining processes

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	РО
										10	11	12
CO1	3	-	-	-	-	3	2	2	-	-	-	-
CO2	3	2	-	1	3	-	-	3	-	-	-	-
CO3	3	2	-	-	3	-	-	-	2	-	-	-

CO4	3	2	-	-	3	-	-	-	2	-	-	-
CO5	3	2	-	-	3	2	3	-	2	-	-	-
CO6	3	2										
CO7	3	1										
CO8	3	1										
CO9	3	2	1-0				1			1		
CO10	3	1			10	1	(PN)	211				
CO11	3											

Assessment Pattern

	Ва	sic Civil Engine	eering	Basic Mechanical Engineering			
Bloom's Category	Continuous	s Assessment	essment Examination		ious nent	End Semester Examination (marks)	
	Test 1	Test 1 Test 2		Test 1	Test 2		
	marks	marks	and the second second	marks	marks		
Remember	5	5	10	7.5	7.5	15	
Understand	20	20	40	12.5	12.5	25	
Apply				5	5	10	
Analyse							
Evaluate							
Create							

Mark distribution

Total Marks	CIE (Marks)	ESE (Marks)	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern:

There will be two parts; Part I – Basic Civil Engineering and Part II – Basic Mechanical Engineering. Part I and PART II carries 50 marks each. For the end semester examination, part I contain 2 parts - Part A and Part B. Part A contain 5 questions carrying 4 marks each (not exceeding 2 questions from each module). Part B contains 2 questions from each module out of which one to be answered. Each question carries 10 mark and can have maximum 2 sub-divisions. The pattern for end semester examination for part II is same as that of part I. However, student should answer both part I and part 2 in separate answer booklets.

Course Level Assessment Questions:

Course Outcome CO1: To recall the role of civil engineer in society and to relate the various disciplines of Civil Engineering.

1.Explain relevance of Civil engineering in the overall infrastructural development of the country. Course outcome 2 (CO2) (One question from each module and not more than two)

- Explain different types of buildings, building components, building materials and building construction
- 1. Discuss the difference between plinth area and carpet area.

Course outcome 3 (CO3) (One question from each module and not more than two)

Describe the importance, objectives and principles of surveying.

1. Explain the importance of surveying in Civil Engineering

Course outcome 4 (CO4) (One question from each module and not more than two)

Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps

1. Explain the civil engineering aspects of elevators, escalators and ramps in buildings

Course outcome 5 (CO5) (One question from each module and not more than two)

Discuss the Materials, energy systems, water management and environment for green buildings.

1. Discuss the relevance of Green building in society

Section II __Answer any 1 full question from each module. Each full question carries 10 marks

Course Outcome 1 (CO1) (Two full question from each module and each question can have maximum 2 sub-divisions)

To recall the role of civil engineer in society and to relate the various disciplines of Civil Engineering <u>CO Questions</u>

- a List out the types of building as per occupancy. Explain any two, each in about five sentences.
 b. Discuss the components of a building with a neat figure.
- **2. a.**What are the major disciplines of civil engineering and explain their role in the infrastructural framework.

b. Explain the role of NBC, KBR & CRZ norms in building rules and regulations prevailing in our country.

Course Outcome 2 (CO2) & Course Outcome 3 (CO3) (Two full question from each module and each question can have maximum 2 sub-divisions)

Explain different types of buildings, building components, building materials and building construction & Describe the importance, objectives and principles of surveying.

CO Questions

- a. What are the different kinds of cement available and what is their use.
 b. List the properties of good building bricks. Explain any five.
- **2.** a. List and explain any five modern construction materials used for construction.
 - **b.** Explain the objectives and principles of surveying

Course outcome 4 (CO4) & Course outcome 5 (CO5) (Two full question from each module and each question can have maximum 2 sub-divisions)

Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps & Discuss the Materials, energy systems, water management and environment for green buildings.

CO Questions

- a. Draw the elevation and plan of one brick thick wall with English bond
 b. Explain the energy systems and water management in Green buildings
- 2. a. Draw neat sketch of the following foundations: (i) Isolated stepped footing;
 (ii) Cantilever footing; and (iii) Continuous footing.
 - b. Discuss the civil engineering aspect of MEP and HVAC in a commercial building

Course Outcome 6 (CO6):

- 1. In an air standard Otto cycle the compression ratio is 7 and compression begins at 35°C, 0.1 MPa. The maximum temperature of the cycle is 1100°C. Find
- i) Heat supplied per kg of air,
- ii) Work done per kg of air,
- iii) Cycle efficiency

Take Cp = 1.005 kJ/kgK and Cv=0.718 kJ/kgK

- A Carnot cycle works with adiabatic compression ratio of 5 and isothermal expansion ratio of 2. The volume of air at the beginning of isothermal expansion is 0.3 m³. If the maximum temperature and pressure is limited to 550K and 21 bar, determine the minimum temperature in the cycle and efficiency of the cycle.
- In an ideal diesel cycle, the temperature at the beginning and end of compression is 65°C and 620°C respectively. The temperature at the beginning and end of the expansion is 1850°C and 850°C. Determine the ideal efficiency of the cycle.

4. Explain the concepts of CRDI and MPFI in IC Engines.

Course Outcome 7 (CO7)

- 1. With the help of a neat sketch explain the working of a 4 stroke SI engine
- 2. Compare the working of 2 stroke and 4 stroke IC engines
- 3. Explain the classification of IC Engines.

Course Outcome 8(CO8):

- 1. Explain the working of vapour compression refrigeration system.
- 2. With the help of suitable sketch explain the working of a split air conditioner.
- 3. Define: COP, specific humidity, relative humidity and dew point temperature.

Course Outcome 9 (CO9):

1. Explain the working of a single stage centrifugal pump with sketches.

- 2. With the help of a neat sketch, explain the working of a reciprocating pump.
- 3. A turbine is to operate under a head of 25 m at 200 rpm. The discharge is 9 m^3/s . If the overall
- efficiency of the turbine is 90%. Determine the power developed by the turbine.

Course Outcome 10 (CO10):

- 1. Explain the working of belt drive and gear drive with the help of neat sketches
- 2. Explain a single plate clutch.
- 3. Sketch different types of gear trains and explain.

Course Outcome 11 (CO11):

1. Describe the operations which can be performed using drilling machine.

- 2. Explain the functions of runners and risers used in casting.
- 3. With a neat sketch, explain the working and parts of a lathe.

Model Question Paper

QP CODE: EST120

Reg No:

Name:

page:3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: EST 120

Course Name: BASICS OF CIVIL AND MECHANICAL ENGINEERING

Max. Marks: 100

Duration: 3 hours

Answer both part I and part 2 in separate answer booklets

PART I: BASIC CIVIL ENGINEERING

PART A

(Answer all questions. Each question carries 4 marks)

- 1. Explain relevance of Civil engineering in the overall infrastructural development of the country.
- 2. Discuss the difference between plinth area and carpet area.
- 3. Explain different types of steel with their properties.
- 4. What are the different kinds of cement available and what is their use?
- 5. Define bearing capacity of soil.

(5 x 4 = 20)

Part B

Answer one full question from each module.

MODULE I

List out the types of building as per occupancy. Explain any two, each in about	five
sentences.	(5)
Discuss the components of a building with a neat figure.	(5)
OR	
What are the major disciplines of civil engineering and explain their role in	the
infrastructural framework.	(5)
Explain the role of NBC, KBR & CRZ norms in building rules and regulations prevailing in	our
country.	(5)
MODULE II	
What are the different kinds of cement available and what is their use	(5)
	List out the types of building as per occupancy. Explain any two, each in about sentences. Discuss the components of a building with a neat figure. OR What are the major disciplines of civil engineering and explain their role in infrastructural framework. Explain the role of NBC, KBR & CRZ norms in building rules and regulations prevailing in country. MODULE II What are the different kinds of cement available and what is their use

8a.	what are the different kinds of cement available and what is their use.	(5)			
b. List the properties of good building bricks. Explain any five.					
	OR				
9a.	List and explain any five modern construction materials used for construction.	(5)			
b.	Explain the objectives and principles of surveying	(5)			

MODULE III

10a.	Draw the elevation and plan of one brick thick wall with English bond	(5)	
b. Explain the energy systems and water management in Green buildings			
	OR		
11a.	Draw neat sketch of the following foundations: (i) Isolated stepped footing;		
	(ii) Cantilever footing; and (iii) Continuous footing.	(5)	
b.	Discuss the civil engineering aspect of MEP and HVAC in a commercial building	(5)	

[10 x 3 = 30]

PART II: BASIC MECHANICAL ENGINEERING

PART A

Answer all questions. Each question carries 4 marks

- 1. Sketch the P-v and T-s diagram of a Carnot cycle and List the processes.
- 2. Illustrate the working of an epicyclic gear train.
- 3. Explain cooling and dehumidification processes.
- 4. Differentiate between soldering and brazing.
- 5. Explain the principle of Additive manufacturing.

4 x 5 = 20 marks

Part B

Answer one full question from each module.

MODULE I

6.	In an air standard Otto cycle the compression ratio is 7 and compression 0.1MPa. The maximum temperature of the cycle is 1100°C. Find i) Heat supplied per kg of air, ii) Work done per kg of air,	begins at 35°C,
	ii) Wolk done per kg of all,	
	Take $C_p = 1.005 \text{ kJ/kgK}$ and $C_v=0.718 \text{ kJ/kgK}$	10 marks
	OR	
7.	a) Explain the working of a 4 stroke SI engine with neat sketches.	7 marks
	b) Explain the fuel system of a petrol engi <mark>ne</mark> .	3 marks
0	MODULE II	
0.	diagram	7 marks
	b) Define: Specific humidity, relative humidity and dew point temperature. OR	3 marks
9.	With the help o <mark>f a neat sketc</mark> h, explain the working of a <mark>centrifugal pu</mark> mp.	10 marks
	MODULE III	
10.	Explain the two high, three high, four high and cluster rolling mills with neat sketches.	10 marks
	OR	
11.	a) Describe the arc welding process with a neat sketch. b) Differentiate between up-milling and down-milling operations.	6 marks 4 marks

SYLLABUS

Module 1

General Introduction to Civil Engineering: Relevance of Civil Engineering in the overall infrastructural development of the country. Responsibility of an engineer in ensuring the safety of built environment. Brief introduction to major disciplines of Civil Engineering like Transportation Engineering, Structural Engineering, Geo-technical Engineering, Water Resources Engineering and Environmental Engineering.

Introduction to buildings: Types of buildings, selection of site for buildings, components of a residential building and their functions.

Building rules and regulations: Relevance of NBC, KBR & CRZ norms (brief discussion only).

Building area: Plinth area, built up area, floor area, carpet area and floor area ratio for a building as per KBR.

Module 2

Surveying: Importance, objectives and principles.

Construction materials, Conventional construction materials: types, properties and uses of building materials: bricks, stones, cement, sand and timber

Cement concrete: Constituent materials, properties and types.

Steel: Steel sections and steel reinforcements, types and uses.

Modern construction materials:- Architectural glass, ceramics, Plastics, composite materials, thermal and acoustic insulating materials, decorative panels, waterproofing materials. Modern uses of gypsum, pre-fabricated building components (brief discussion only).

Module 3

Building Construction: Foundations: Bearing capacity of soil (definition only), functions of foundations, types – shallow and deep (brief discussion only). Load bearing and framed structures (concept only).

Brick masonry: - Header and stretcher bond, English bond & Flemish bond random rubble masonry. **Roofs and floors:** - Functions, types; flooring materials (brief discussion only).

Basic infrastructure services: MEP, HVAC, elevators, escalators and ramps (Civil Engineering aspects only), fire safety for buildings.

Green buildings:- Materials, energy systems, water management and environment for green buildings. (brief discussion only).

Module 4

Analysis of thermodynamic cycles: Carnot, Otto, Diesel cycles, Derivation of efficiency of these cycles, Problems to calculate heat added, heat rejected, net work and efficiency. IC Engines: CI, SI, 2-Stroke, 4-Stroke engines. Listing the parts of different types of IC Engines. Efficiencies of IC Engines(Definitions only), Air, Fuel, cooling and lubricating systems in SI and CI Engines, CRDI, MPFI. Concept of hybrid engines.

Module 5

Refrigeration: Unit of refrigeration, reversed Carnot cycle,COP, vapour compression cycle (only description and no problems); Definitions of dry, wet & dew point temperatures, specific humidity and relative humidity, Cooling and dehumidification, Layout of unit and central air conditioners.

Description about working with sketches of: Reciprocating pump, Centrifugal pump, Pelton turbine, Francis turbine and Kaplan turbine. Overall efficiency, Problems on calculation of input and output power of pumps and turbines (No velocity triangles)

Description about working with sketches of: Belt and Chain drives, Gear and Gear trains, Single plate clutches.

Module 6

Manufacturing Process: Basic description of the manufacturing processes – Sand Casting, Forging, Rolling, Extrusion and their applications.

Metal Joining Processes: List types of welding, Description with sketches of Arc Welding, Soldering and Brazing and their applications

Basic Machining operations: Turning, Drilling, Milling and Grinding.

Description about working with block diagram of: Lathe, Drilling machine, Milling machine, CNC Machine. Principle of CAD/CAM, Rapid and Additive manufacturing.

Text Books:

- 1. Rangwala, S. C., Essentials of Civil Engineering, Charotar Publishing House
- Mckay, W.B. and Mckay, J. K., Building Construction, Volumes 1 to 4, Pearson India Education Services

References Books:

- 1. Chen W.F and Liew J Y R (Eds), The Civil Engineering Handbook. II Edition CRC Press (Taylor and Francis)
- 2. Chudley, R and Greeno R, Building construction handbook, Addison Wesley, Longman group, England
- 3. Chudley, R, Construction Technology, Vol. I to IV, Longman group, England Course Plan
- 4. Kandya A A, Elements of Civil Engineering, Charotar Publishing house
- 5. Mamlouk, M. S., and Zaniewski, J. P., Materials for Civil and Construction Engineering, Pearson Publishers
- 6. Rangwala S.C and Dalal K B Building Construction Charotar Publishing house
- 7. Clifford, M., Simmons, K. and Shipway, P., An Introduction to Mechanical Engineering Part I -CRC Press
- 8. Roy and Choudhary, Elements of Mechanical Engineering, Media Promoters & Publishers Pvt. Ltd., Mumbai.
- 9. Sawhney, G. S., Fundamentals of Mechanical Engineering, PHI
- 10. G Shanmugam, M S Palanichamy, Basic Civil and Mechanical Engineering, McGraw Hill Education; First edition, 2018
- 11. Benjamin, J., Basic Mechanical Engineering, Pentex Books, 9th Edition, 2018
- 12. Balachandran, P.Basic Mechanical Engineering, Owl Books

Course Contents and Lecture Schedule:

No	Торіс	Course outcomes addressed	No. of Lectures			
1	Module I		Total: 7			
1.1	General Introduction to Civil Engineering: Relevance of Civil Engineering in the overall infrastructural development of the country. Responsibility of an engineer in ensuring the safety of built environment.	CO1	1			
1.2	Brief introduction to major disciplines of Civil Engineering like Transportation Engineering, Structural Engineering, Geo-technical Engineering, Water Resources Engineering and Environmental Engineering.	CO1	2			
1.3	<i>Introduction to buildings:</i> Types of buildings, selection of site for buildings, components of a residential building and their functions.	CO2	2			
1.4	<i>Building rules and regulations:</i> Relevance of NBC, KBR & CRZ norms (brief discussion only)	CO2	1			
1.5	<i>Building area:</i> Plinth area, built up area, floor area, carpet area and floor area ratio for a building as per KBR.	CO2	1			
2	Module 2					
2.1	Surveying: Importance, objectives and principles.	СОЗ	1			
2.2	Bricks: - Classification, properties of good bricks, and tests on bricks	CO2	1			
2.3	Stones: - <i>Qualities</i> of good stones, types of stones and their uses. Cement: - Good qualities of cement, types of cement and their uses.	CO2	1			
2.4	Sand: - Classification, qualities of good sand and sieve analysis (basics only). Timber: - Characteristics, properties and uses.	CO2	1			
2.5	Cement concrete: - Constituent materials, properties and types, Steel: - Steel sections and steel reinforcements, types and uses.	CO2	1			

2.6	Modern construction materials: - Architectural glass, ceramics, plastics, composite materials, thermal and acoustic insulating materials, decorative panels, waterproofing materials, modern uses of gypsum, pre-fabricated building components (brief discussion only)	CO2	2		
3	Module 3		Total: 7		
3.1	Foundations: - Bearing capacity of soil (definition only), functions of foundations, types – shallow and deep (brief discussion only). Brick masonry: - Header and stretcher bond, English bond & Flemish bond– elevation and plan (one & one and a half brick wall only). Random rubble masonry.	CO2	2		
3.2	Roofs: Functions, types; roofing materials (brief discussion only) Floors: Functions, types; flooring materials (brief discussion only)	CO2	2		
3.3	Basic infrastructure services: MEP, HVAC, Elevators, escalators and ramps (Civil Engineering aspects only) fire safety for buildings	CO4	2		
3.4	<i>Green buildings:</i> - Materials, energy systems, water management and environment for green buildings. (brief discussion only)	CO5	1		
4	MODULE 4				
4.1	Analysis of thermodynamic cycles: Carnot, Otto, and Diesel cy Derivation of efficiency of these cycles, Problems to calculate h added, heat rejected, net work and efficiency	cle- 4 leat			
4.2	IC Engines: CI, SI, 2-Stroke, 4-Stroke engines. Listing the parts of 2 different types of IC Engines, efficiencies of IC Engines(Description only)				
4.3	Air, Fuel, cooling and lubricating systems in SI and CI Engines, CRDI, 2 MPFI. Concept of hybrid engines				
5	MODULE 5				
5.1	Refrigeration: Unit of refrigeration, reversed Carnot cycle, COP, vapour1compression cycle (only description and no problems)1				
5.2	Definitions of dry, wet & dew point temperatures, specific humidity and 1 relative humidity, Cooling and dehumidification, Layout of unit and central air conditioners.				

5.3	Description about working with sketches : Reciprocating pump, Centrifugal pump, Pelton turbine, Francis turbine and Kaplan turbine. Overall efficiency, Problems on calculation of input and output power of pumps and turbines (No velocity triangles)	4				
5.4	Description about working with sketches of: Belt and Chain drives, Gear and Gear trains, Single plate clutches	3				
6	MODULE 6	1 N				
6.1	Manufacturing Process: Basic description of the manufacturing 2 1 processes – Sand Casting, Forging, Rolling, Extrusion and their applications.					
6.2	Metal Joining Processes :List types of welding, Description with sketches of Arc Welding, Soldering and Brazing, and their applications	1				
6.3	Basic Machining operations: Turning, Drilling, Milling and Grinding Description about working with block diagrams of: Lathe, Drilling machine, Milling machine, CNC Machine	3				
6.4	Principle of CAD/CAM, Rapid and Additive manufacturing	1				

HUMANITIES

CODE		CATEGORY	L	Т	Р	CREDIT
MCN201	SUSTAINABLE ENGINEERING		2	0	0	NIL

Preamble: Objective of this course is to inculcate in students an awareness of environmental issues and the global initiatives towards attaining sustainability. The student should realize the potential of technology in bringing in sustainable practices.

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

CO 1	Understand the relevance and the concept of sustainability and the global initiatives in this direction
CO 2	Explain the different types of environmental pollution problems and their sustainable solutions
CO 3	Discuss the environmental regulations and standards
CO 4	Outline the concepts related to conventional and non-conventional energy
CO 5	Demonstrate the broad perspective of sustainable practices by utilizing engineering
	knowledge and principles

Mapping of course outcomes with program outcomes

		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	PO
	/		191	11							10	11	12
CO 1							2	3					2
CO 2			4				2	3					2
CO 3			12.5				2	3					2
CO 4							2	3					2
CO 5							2	3					2

Assessment Pattern

Mark distribution

Bloom's Category	Continuous Asses	ssment Tests	End Semester Examination
	1	2	
Remember	20	20	40
Understand	20	20	40
Apply	10	10	20
Analyse		and the second	
Evaluate		nana la	
Create		2014	

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Course Level Assessment Questions

Course Outcome 1 (CO1): Understand the relevance and the concept of sustainability and the global initiatives in this direction

- 1. Explain with an example a technology that has contributed positively to sustainable development.
- 2. Write a note on Millennium Development Goals.

Course Outcome 2 (CO2): Explain the different types of environmental pollution problems and their sustainable solutions

- 1. Explain the 3R concept in solid waste management?
- 2. Write a note on any one environmental pollution problem and suggest a sustainable solution.
- 3. In the absence of green house effect the surface temperature of earth would not have been suitable for survival of life on earth. Comment on this statement.

Course Outcome 3(CO3): Discuss the environmental regulations and standards

- 1. Illustrate Life Cycle Analysis with an example of your choice.
- 2. "Nature is the most successful designer and the most brilliant engineer that has ever evolved". Discuss.

Course Outcome 4 (CO4): Outline the concepts related to conventional and non-conventional energy

- 1. Suggest a sustainable system to generate hot water in a residential building in tropical climate.
- 2. Enumerate the impacts of biomass energy on the environment.

Course Outcome 5 (CO5): Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles

1. Suggest suitable measures to make the conveyance facilities used by your institution sustainable.

Model Question paper

Part A

(Answer all questions. Each question carries 3 marks each)

- 1. Define sustainable development.
- 2. Write a short note on Millennium Development Goals.
- 3. Describe carbon credit.
- 4. Give an account of climate change and its effect on environment.
- 5. Describe biomimicry? Give two examples.
- 6. Explain the basic concept of Life Cycle Assessment.
- 7. Name three renewable energy sources.

- 8. Mention some of the disadvantages of wind energy.
- 9. Enlist some of the features of sustainable habitat.
- 10. Explain green engineering.

Part B

(Answer one question from each module. Each question carries 14 marks)

- 11. Discuss the evolution of the concept of sustainability. Comment on its relevance in the modern world.
- 12. Explain Clean Development Mechanism.
- 13. Explain the common sources of water pollution and its harmful effects.

OR

OR

- 14. Give an account of solid waste management in cities.
- 15. Explain the different steps involved in the conduct of Environmental Impact Assessment.

OR

16. Suggest some methods to create public awareness on environmental issues.

17. Comment on the statement, "Almost all energy that man uses comes from the Sun".

OR

OR

18. Write notes on:

- a. Land degradation due to water logging.
- b. Over exploitation of water.
- 19. Discuss the elements related to sustainable urbanisation.

20. Discuss any three methods by which you can increase energy efficiency in buildings.

Syllabus

Sustainability- need and concept, technology and sustainable development-Natural resources and their pollution, Carbon credits, Zero waste concept. Life Cycle Analysis, Environmental Impact Assessment studies, Sustainable habitat, Green buildings, green materials, Energy, Conventional and renewable sources, Sustainable urbanization, Industrial Ecology.

Module 1

Sustainability: Introduction, concept, evolution of the concept; Social, environmental and economic sustainability concepts; Sustainable development, Nexus between Technology and Sustainable development; Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), Clean Development Mechanism (CDM).

Module 2

Environmental Pollution: Air Pollution and its effects, Water pollution and its sources, Zero waste concept and 3 R concepts in solid waste management; Greenhouse effect, Global warming, Climate change, Ozone layer depletion, Carbon credits, carbon trading and carbon foot print, legal provisions for environmental protection.

Module 3

Environmental management standards: ISO 14001:2015 frame work and benefits, Scope and goal of Life Cycle Analysis (LCA), Circular economy, Bio-mimicking, Environment Impact Assessment (EIA), Industrial ecology and industrial symbiosis.

Module 4

Resources and its utilisation: Basic concepts of Conventional and non-conventional energy, General idea about solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans and Geothermal energy.

Module 5

Sustainability practices: Basic concept of sustainable habitat, Methods for increasing energy efficiency in buildings, Green Engineering, Sustainable Urbanisation, Sustainable cities, Sustainable transport.

ESIG.

Reference Books

- 1. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 2. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning
- 3. Environment Impact Assessment Guidelines, Notification of Government of India, 2006
- 4. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998
- 5. ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications GRIHA Rating System
- 6. Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.
- 7. Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book Society (ELBS).
- 8. Purohit, S. S., Green Technology An approach for sustainable environment, Agrobios Publication

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Sustainability	
1.1	Introduction, concept, evolution of the concept	1
1.2	Social, environmental and economic sustainability concepts	1
1.3	Sustainable development, Nexus between Technology and Sustainable	1
	development	
1.4	Millennium Development Goals (MDGs) and Sustainable Development Goals	1
	(SDGs)	A.A.
1.5	Clean Development Mechanism (CDM)	1
2	Environmental Pollution	Δ 1
2.1	Air Pollution and its effects	1
2.2	Water pollution and its sources	1
2.3	Zero waste concept and 3 R concepts in solid waste management	1
2.4	Greenhouse effect, Global warming, Climate change, Ozone layer depletion	1
2.5	Carbon credits, carbon trading and carbon foot print.	1
2.6	Legal provisions for environmental protection.	1
3	Environmental management standards	
3.1	Environmental management standards	1
3.2	ISO 14001:2015 frame work and benefits	1
3.3	Scope and Goal of Life Cycle Analysis (LCA)	1
3.4	Circular economy, Bio-mimicking	1
3.5	Environment Impact Assessment (EIA)	1
3.6	Industrial Ecology, Industrial Symbiosis	1
4	Resources and its utilisation	
4.1	Basic concepts of Conventional and non-conventional energy	1
4.2	General idea about solar energy, Fuel cells	1
4.3	Wind energy, Small hydro plants, bio-fuels	1
4.4	Energy derived from oceans and Geothermal energy	1
5	Sustainability Practices	
	A SAL	
5.1	Basic concept of sustainable habitat	1
5.2	Methods for increasing energy efficiency of buildings	1
5.3	Green Engineering	1
5.4	Sustainable Urbanisation, Sustainable cities, Sustainable transport	1
	2014	

CODE	COURSE NAME	CATEGORY	L	Т	Ρ	CREDIT
			2	0	0	2
EST 200	DESIGN AND ENGINEERING					

Preamble:

The purpose of this course is to

i) introduce the undergraduate engineering studentsthe fundamental principles of design engineering,

- ii) make them understand the steps involved in the design process and
- iii) familiarize them with the basic tools used and approaches in design.

Students are expected to apply design thinking in learning as well as while practicing engineering, which is very important and relevant for today. Case studies from various practical situations will help the students realize that design is not only concerned about the function but also many other factors like customer requirements, economics, reliability, etc. along with a variety of life cycle issues.

The course will help students to consider aesthetics, ergonomics and sustainability factors in designs and also to practice professional ethics while designing.

Prerequisite:

Nil.The course will be generic to all engineering disciplines and will not require specialized preparation or prerequisites in any of the individual engineering disciplines.

Course Outcomes:

After the completion of the course the student will be able to

CO 1	Explain the different concepts and principles involved in design engineering.
CO 2	Apply design thinking while learning and practicing engineering.
CO 3	Develop innovative, reliable, sustainable and economically viable designs
	incorporating knowledge in engineering.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	РО
					1.1					10	11	12
CO 1	2	1					1			1		
CO 2		2				1		1				2
CO 3			2			1	1		2	2		1

HUMANITIES

Assessment Pattern

Continuous Internal Evaluation (CIE) Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination (ESE) Pattern: There will be two parts; Part A and Part B.

Part A : 30 marks : 70 marks

Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions.

Part B contains 2 case study questions from each module of which student should answer any one. Each question carry 14 marks and can have maximum 2 sub questions.

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours
150	5	100	Shours

2014

Bloom's Category	Continuous Asse	End Semester		
	1	2	Examination	
Remember	5	5	10	
Understand	10	10	20	
Apply	35	35	70	
Analyse			-	
Evaluate	E. Cr			
Create	1. 50	1. A.		

Course Level Assessment Questions

Course Outcome 1 (CO1): Appreciate the different concepts and principles involved in design engineering.

1. State how engineering design is different from other kinds of design

2. List the different stages in a design process.

3. Describedesign thinking.

4. State the function of prototyping and proofing in engineering design.

5. Write notes on the following concepts in connection with design engineering 1) Modular Design,

2) Life Cycle Design , 3) Value Engineering, 4) Concurrent Engineering, and 5) Reverse Engineering

6. State design rights.

Course Outcome 2 (CO2) Apply design thinking while learning and practicing engineering.

1. Construct the iterative process for design thinking in developing simple products like a pen, umbrella, bag, etc.

2. Show with an example how divergent-convergent thinking helps in generating alternative designs and then how to narrow down to the best design.

3. Describe how a problem-based learning helps in creating better design engineering solutions.

4. Discuss as an engineer, how ethics play a decisive role in your designs

Course Outcome 3(CO3): Develop innovative, reliable, sustainable and economically viable designs incorporating different segments of knowledge in engineering.

1. Illustrate the development of any simple product by passing through the different stages of design process

2014

2. Show the graphical design communication with the help of detailed 2D or 3D drawings for any simple product.

3. Describe how to develop new designs for simple products through bio-mimicry.

Model Question paper

Page 1 of 2

Reg No.: ______ Name: _____ APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD/FOURTH SEMESTER B.TECH DEGREE EXAMINATION Course Code: EST 200 Course Name: DESIGN AND ENGINEERING Max. Marks: 100Duration: 3 Hours

PART A

Answer all questions, each question carries 3 marks Use only hand sketches

(1)Write about the basic design process.

- (2) Describe how to finalize the design objectives.
- (3) State the role of divergent-convergent questioning in design thinking.
- (4) Discuss how to perform design thinking in a team managing the conflicts.
- (5) Show how engineering sketches and drawings convey designs.
- (6)Explain the role of mathematics and physics in design engineering process.
- (7) Distinguish between project-based learning and problem-based learning in design engineering.
- (8) Describe how concepts like value engineering , concurrent engineering and reverse engineering influence engineering designs?
- (9) Show how designs are varied based on the aspects of production methods, life span, reliability and environment?
- (10) Explain how economics influence the engineering designs?

(10x3 marks = 30 marks)

Part B

Answer any ONE question from each module. Each question carry 14 marks

Module 1

(11) Show the designing of a wrist watch going through the various stages of the design process. Use hand sketches to illustrate the processes.

or

(12)Find the customer requirements for designing a new car showroom. Show how the design objectives were finalized considering the design constraints?

Module 2

(13)Illustrate the design thinking approach for designing a bag for college students within a limited budget. Describe each stage of the process and the iterative procedure involved. Use hand sketches to support your arguments.

or

(14)Construct a number of possible designs and then refine them to narrow down to the best design for a drug trolley used in hospitals. Show how the divergent-convergent thinking helps in the process. Provide your rationale for each step by using hand sketches only.

Module 3

(15) Graphically communicate the design of a thermo flask used to keep hot coffee. Draw the detailed 2D drawings of the same with design detailing, material selection, scale drawings, dimensions, tolerances, etc. Use only hand sketches.

or

(16)Describe the role of mathematical modelling in design engineering. Show how mathematics and physics play a role in designing a lifting mechanism to raise 100 kg of weight to a floor at a height of 10 meters in a construction site.

Module 4

(17) Show the development of a nature inspired design for a solar poweredbus waiting shed beside a highway. Relate between natural and man-made designs. Use hand sketches to support your arguments.

or

(18)Show the design of a simple sofa and then depict how the design changes when considering 1) aesthetics and 2) ergonomics into consideration. Give hand sketches and explanations to justify the changes in designs.

Module 5

(19)Examine the changes in the design of a foot wear with constraints of 1) production methods, 2) life span requirement, 3) reliability issues and 4) environmental factors. Use hand sketches and give proper rationalization for the changes in design.

or

- (20)Describe the how to estimate the cost of a particular design using ANY of the following:i) a website, ii) the layout of a plant, iii) the elevation of a building, iv) anelectrical or electronic system or device and v) a car.
- Show how economics will influence the engineering designs. Use hand sketches to support your arguments.

(5x14 marks =70 marks)

Syllabus

Module 1

<u>Design Process</u>:- Introduction to Design and Engineering Design, Defining a Design Process-:Detailing Customer Requirements, Setting Design Objectives, Identifying Constraints, Establishing Functions, Generating Design Alternatives and Choosing a Design.

Module 2

<u>Design Thinking Approach:-</u>Introduction to Design Thinking, Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. Design Thinking as Divergent-Convergent Questioning. Design Thinking in a Team Environment.

Module 3

<u>Design Communication</u> (Languages of Engineering Design):-Communicating Designs Graphically, Communicating Designs Orally and in Writing. Mathematical Modeling In Design, Prototyping and Proofing the Design.

Module 4

<u>Design Engineering Concepts:-</u>Project-based Learning and Problem-based Learning in Design.Modular Design and Life Cycle Design Approaches. Application of Biomimicry,Aesthetics and Ergonomics in Design. Value Engineering, Concurrent Engineering, and Reverse Engineering in Design.

Module 5

Expediency, Economics and Environment in Design Engineering:-Design for Production, Use, and Sustainability. Engineering Economics in Design. Design Rights. Ethics in Design

Estd.

2614

Text Books

1) YousefHaik, SangarappillaiSivaloganathan, Tamer M. Shahin, Engineering Design Process, Cengage Learning 2003, Third Edition, ISBN-10: 9781305253285,

2) Voland, G., Engineering by Design, Pearson India 2014, Second Edition, ISBN 9332535051

Reference Books

1.Philip Kosky, Robert Balmer, William Keat, George Wise, Exploring Engineering, Fourth Edition: An Introduction to Engineering and Design, Academic Press 2015, 4th Edition, ISBN: 9780128012420.

2. Clive L. Dym, Engineering Design: A Project-Based Introduction, John Wiley & Sons, New York 2009, Fourth Edition, ISBN: 978-1-118-32458-5

3. Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg Publishers 2011, First Edition, ISBN: 978-1847886361

4. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Engineering Design: A Systematic Approach, Springer 2007, Third Edition, ISBN 978-1-84628-319-2

HUMANITIES

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Module 1: Design Process	
1.1	Introduction to Design and Engineering Design.	
	What does it mean to design something? How Is engineering design different from other kinds of design? Where and when do engineers design? What are the basic vocabularyin engineering design? How to learn and do engineering design.	1
1.2	Defining a Design Process-: Detailing Customer Requirements. How to do engineering design? Illustrate the process with an example. How to identify the customer requirements of design?	L 1
1.3	 Defining a Design Process-: Setting Design Objectives, Identifying Constraints, Establishing Functions. How to finalize the design objectives? How to identify the design constraints? How to express the functions a design in engineering terms? 	1
1.4	Defining a Design Process-: Generating Design Alternatives and Choosing a Design. How to generate or create feasible design alternatives? How to identify the "best possible design"?	1
1.5	Case Studies:- Stages of Design Process. Conduct exercises for designing simple products going through the different stages of design process.	1
2	Module 2: Design Thinking Approach	1.1
2.1	Introduction to Design Thinking How does the design thinking approach help engineers in creating innovative and efficient designs?	1
2.2	Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. How can the engineers arrive at better designs utilizing the iterative design thinking process (in which knowledge acquired in the later stages can be applied back to the earlier stages)?	1
2.3	Design Thinking as Divergent-Convergent Questioning. Describe how to create a number of possible designs and then how to refine and narrow down to the 'best design'.	1
2.4	Design Thinking in a Team Environment. How to perform design thinking as a team managing the conflicts ?	1
2.5	Case Studies: Design Thinking Approach. Conduct exercises using the design thinking approach for	1

	<i>designing any simple products within a limited time and</i> budget	
3	Module 3: Design Communication (Languages of Engineering	g Design)
3.1	Communicating Designs Graphically.	1
	How do engineering sketches and drawings convey designs?	1
3.2	Communicating Designs Orally and in Writing.	
	How can a design be communicated through oral	1
	presentation or technical reports efficiently?	1
	First Series Examination	V1
3.3	Mathematical Modelling in Design.	
	How do mathematics and physics become a part of the	1
2.4	design process?	
3.4	Prototyping and Proofing the Design.	1
	How to predict whether the design will function well or not?	
3.5	Case Studies: Communicating Designs Graphically.	
	Conduct exercises for design communication through	1
	detailed 2D or 3D drawings of simple products with	1
	design detailing, material selection, scale drawings, dimensions, tolorgnoos, etc.	
1	Module 4: Design Engineering Concents	
	Project based Learning and Problem based Learning in	1
4.1	Design.	1
	How engineering students can learn design engineering	
	through projects?	
	How students can take up problems to learn design	
12	engineering? Modular Design and Life Cycle Design Approaches	1
4.2	Wooddaar Design and Ene Cycle Design Approaches.	1
	What is modular approach in design engineering? How it helps?	2
	How the life cycle design approach influences design	.00
	decisions?	
4.3	Application of Bio-mimicry, Aesthetics and Ergonomics	1
	in Design.	
	How do aesthetics and ergonomics change engineering	
	designs?	
	How do the intelligence in nature inspire engineering	
	in engineering?	
4.4	Value Engineering, Concurrent Engineering, and Reverse	1
	Engineering in Design.	
	How do concepts like value engineering , concurrent	
	engineering and reverse engineering influence	
	engineering designs?	
4.5	Case Studies: Bio-mimicry based Designs.	1
	Conduct exercises to develop new designs for simple	

HUMANITIES

	products using bio-mimicry and train students to bring out		
	new nature inspired designs.		
5	Module 5: Expediency, Economics and Environment in Desig	<u>yn</u>	
	Engineering		
5.1	Design for Production, Use, and Sustainability.	1	
	How designs are finalized based on the aspects of		
	production methods, life span, reliability and		
	environment?		
5.2	Engineering Economics in Design.	1	
	How to estimate the cost of a particular design and how		
	will economics influence the engineering designs?		
5.3	Design Rights.	1	
	What are design rights and how can an engineer put it		
	into practice?		
5.4	Ethics in Design.	1	
	How do ethics play a decisive role in engineering design?		
5.5	Case Studies: Design for Production, Use, and	1	
	Sustainability.		
	Conduct exercises using simple products to show how designs		
	change with constraints of production methods, life span		
	requirement, reliability issues and environmental factors.		
	Second Series Examination		

Code.	Course Name	L	Т	Р	Hrs	Credit
HUT 200	Professional Ethics	2	0	0	2	2

Preamble: To enable students to create awareness on ethics and human values.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to N 6 17

CO 1	Understand the core values that shape the ethical behaviour of a professional.
CO 2	Adopt a good character and follow an ethical life.
CO 3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.
CO 4	Solve moral and ethical problems through exploration and assessment by established experiments.
CO 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.

Mapping of course outcomes with program outcomes

1

	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1
	1			14						0	1	2
CO 1								2			2	
CO 2								2			2	
CO 3				ļ				3			2	
CO 4				Ì	Ś.			3	1		2	
CO 5						1		3	1		2	

Assessment Pattern

Bloom's category	Continuous Assessme	End Semester Exam		
	1	2		
Remember	15	15	30	
Understood	20	20	40	
Apply	15	15	30	

Mark distribution

Total Marks	CIE	ESE	ESE Duration		
150	50	100	3 hours		

Continuous Internal Evaluation Pattern:

Attendance	:	10 marks
Continuous Assessment Tests (2 Nos)	:	25 marks
Assignments/Quiz	:	15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Define integrity and point out ethical values.
- 2. Describe the qualities required to live a peaceful life.
- 3. Explain the role of engineers in modern society.

Course Outcome 2 (CO2)

- 1. Derive the codes of ethics.
- 2. Differentiate consensus and controversy.
- 3. Discuss in detail about character and confidence.

Course Outcome 3(CO3):

- 1. Explain the role of professional's ethics in technological development.
- 2. Distinguish between self interest and conflicts of interest.
- 3. Review on industrial standards and legal ethics.

Course Outcome 4 (CO4):

- 1. Illustrate the role of engineers as experimenters.
- 2. Interpret the terms safety and risk.
- 3. Show how the occupational crimes are resolved by keeping the rights of employees.

Course Outcome 5 (CO5):

- 1. Exemplify the engineers as managers.
- 2. Investigate the causes and effects of acid rain with a case study.
- 3. Explorate the need of environmental ethics in technological development.

Model Question paper

QP CODE:	Reg No:
PAGES:3	Name :
APJ ABDUL KALAM TECHNOLOGICAL UNIVE B.TECH DEGREE EXAMINATIO Course Code: HU Course Name: PROFESSIO Max. Marks: 100 (2019-Scheme PART A	RSITY THIRD/FOURTH SEMESTER N, MONTH & YEAR T 200 NAL ETHICS Duration: 3 Hours
(Answer all questions, each qu	uestion carries 3 marks)
1. Define empathy and honesty.	
2. Briefly explain about morals, values and ethics.	
3. Interpret the two forms of self-respect.	
4. List out the models of professional roles.	
5. Indicate the advantages of using standards.	
6. Point out the conditions required to define a valid c	consent?
7. Identify the conflicts of interests with an example?	
8. Recall confidentiality.	
9. Conclude the features of biometric ethics.	
10. Name any three professional societies and their role	e relevant to engineers.
	(10x3 = 30 marks)
PART B	
(Answer one full question from each module, ea	ch question carries 14 marks)
MODULE I	
11. a) Classify the relationship between ethical values and l	law?
b) Compare between caring and sharing.	(10+4 = 14 marks)

Or

12. a) Exemplify a comprehensive review about integrity and respect for others.
(8+6 = 14 marks)

(8+6 = 14 marks)

(8+6 = 14 marks)

(8+6 = 14 marks)

MODULE II

13.a) Explain the three main levels of moral developments, deviced by Kohlberg.

b) Differentiate moral codes and optimal codes. (10+4 = 14 marks)

Or

14. a) Extrapolate the duty ethics and right ethics.

b) Discuss in detail the three types of inquiries in engineering ethics (8+6 = 14 marks)

MODULE III

15.a) Summarize the following features of morally responsible engineers.

(i) Moral autonomy

(ii) Accountability

b)Explain the rights of employees

Or

16. a) Explain the reasons for Chernobyl mishap?

b) Describe the methods to improve collegiality and loyalty.

MODULE IV

17.a) Execute collegiality with respect to commitment, respect and connectedness.

b) Identify conflicts of interests with an example.

Or

18. a) Explain in detail about professional rights and employee rights.

b) Exemplify engineers as managers.

MODULE V

19.a) Evaluate the technology transfer and appropriate technology.

b) Explain about computer and internet ethics.

Or

(8+6 = 14 marks)

20. a) Investigate the causes and effects of acid rain with a case study.

b) Conclude the features of ecocentric and biocentric ethics. (8+6 = 14 marks)

<u>Syllabus</u>

Module 1 – Human Values.

Morals, values and Ethics – Integrity- Academic integrity-Work Ethics- Service Learning- Civic Virtue-Respect for others- Living peacefully- Caring and Sharing- Honestly- courage-Cooperation commitment-Empathy-Self Confidence -Social Expectations.

Module 2 - Engineering Ethics & Professionalism.

Senses of Engineering Ethics - Variety of moral issues- Types of inquiry- Moral dilemmas –Moral Autonomy – Kohlberg's theory- Gilligan's theory- Consensus and Controversy-Profession and Professionalism- Models of professional roles-Theories about right action –Self interest-Customs and Religion- Uses of Ethical Theories.

Module 3- Engineering as social Experimentation.

Engineering as Experimentation – Engineers as responsible Experimenters- Codes of Ethics- Plagiarism-A balanced outlook on law - Challenges case study- Bhopal gas tragedy.

Module 4- Responsibilities and Rights.

Collegiality and loyalty – Managing conflict- Respect for authority- Collective bargaining- Confidentiality-Role of confidentiality in moral integrity-Conflicts of interest- Occupational crime- Professional rights-Employee right- IPR Discrimination.

Module 5- Global Ethical Issues.

Multinational Corporations- Environmental Ethics- Business Ethics- Computer Ethics -Role in Technological Development-Engineers as Managers- Consulting Engineers- Engineers as Expert witnesses and advisors-Moral leadership.

Text Book

- 1. M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi,2012.
- 2. R S Naagarazan, A text book on professional ethics and human values, New age international (P) limited ,New Delhi,2006.

2014

Reference Books

- 1. Mike W Martin and Roland Schinzinger, Ethics in Engineering,4th edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi,2014.
- 2. Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
- 3. Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics- Concepts and cases, Wadsworth Thompson Learning, United states, 2005.
- 4. http://www.slideword.org/slidestag.aspx/human-values-and-Professional-ethics.

Course Contents and Lecture Schedule

SL.N	Торіс	No. of Lectures				
ο		25				
1	Module 1 – Human Values.					
1.1	Morals, values and Ethics, Integrity, Academic Integrity, Work Ethics	1				
1.2	Service Learning, Civic Virtue, Respect for others, Living peacefully	1				
1.3	Caring and Sharing, Honesty, Courage, Co-operation commitment	2				
1.4	Empathy, Self Confidence, Social Expectations	1				
2	Module 2- Engineering Ethics & Professionalism.					
2.1	Senses of Engineering Ethics, Variety of moral issues, Types of inquiry	1				
2.2	Moral dilemmas, Moral Autonomy, Kohlberg's theory	1				
2.3	Gilligan's theory, Consensus and Controversy, Profession& Professionalism, Models of professional roles, Theories about right action	2				
2.4	Self interest-Customs and Religion, Uses of Ethical Theories	1				
3	Module 3- Engineering as social Experimentation.					
3.1	Engineering as Experimentation, Engineers as responsible Experimenters	1				
3.2	Codes of Ethics, Plagiarism, A balanced outlook on law	2				
3.3	Challenger case study, Bhopal gas tragedy	2				
4	Module 4- Responsibilities and Rights.					
4.1	Collegiality and loyalty, Managing conflict, Respect for authority	1				
4.2	Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Conflicts of interest	2				
4.3	Occupational crime, Professional rights, Employee right, IPR Discrimination	2				
5	Module 5- Global Ethical Issues.	63				
5.1	Multinational Corporations, Environmental Ethics, Business Ethics, Computer Ethics	2				
5.2	Role in Technological Development, Moral leadership	1				
5.3	Engineers as Managers, Consulting Engineers, Engineers as Expert witnesses and advisors	2				

CODE	COURSE NAME	CATEGORY L		Т	Ρ	CREDIT
MCN202	CONSTITUTION OF INDIA		2	0	0	NIL

Preamble:

The study of their own country constitution and studying the importance environment as well as understanding their own human rights help the students to concentrate on their day to day discipline. It also gives the knowledge and strength to face the society and people.

×.,

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to INII VEV

CO 1	Explain the background of the present constitution of India and features.
CO 2	Utilize the fundamental rights and duties.
CO 3	Understand the working of the union executive, parliament and judiciary.
CO 4	Understand the working of the state executive, legislature and judiciary.
CO 5	Utilize the special provisions and statutory institutions.
CO 6	Show national and patriotic spirit as responsible citizens of the country

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
										10	11	12
CO 1					11	2	2	2		2		
CO 2					1	3	3	3		3		
CO 3					0.1	3	2	3		3		
CO 4						3	2	3		3		
CO 5						3	2	3		3		
CO 6						3	3	3	1	2		

Assessment Pattern

Bloom's Category	Continuous As	sessment	End Semester Examination			
	Tests					
	1	2				
Remember	20	20	40			
Understand	20	20	40			
Apply	10	10	20			
Analyse						

Evaluate		
Create		

Mark distribution

Total	CIE	ESE	ESE Dura	tion					
Marks	-								
	ΔI	A IC	DIN						
150	50	100	3 hours	-					
	The second second	a year of	11.37	N					
	1.1	LE	INI	J.					
Continuous Internal Evaluation Pattern:									
Attendance				: 10					
Continuous A	Assessm	ent Test (2 n	umbers)	: 25					
Assignment/	Quiz/Co	urse project		: 15					

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1 Discuss the historical background of the Indian constitution.
- 2 Explain the salient features of the Indian constitution.
- 3 Discuss the importance of preamble in the implementation of constitution.

Course Outcome 2 (CO2)

- 1 What are fundamental rights ? Examine each of them.
- 2 Examine the scope of freedom of speech and expression underlying the constitution.
- 3 The thumb impression of an accused is taken by the police against his will. He contends

that this is a violation of his rights under Art 20(3) of the constitution. Decide.

Course Outcome 3(CO3):

1 Explain the powers of the President to suspend the fundamental rights during emergency.

- 2 Explain the salient features of appeal by special leave.
- 3. List the constitutional powers of President.

Course Outcome 4 (CO4):

- 1 Discuss the constitutional powers of Governor.
- 2 Examine the writ jurisdiction of High court.
- 3 Discuss the qualification and disqualification of membership of state legislature.

Course Outcome 5 (CO5):

- 1 Discuss the duties and powers of comptroller of auditor general.
- 2 Discuss the proclamation of emergency.
- 3 A state levies tax on motor vehicles used in the state, for the purpose of maintaining roads
 - in the state. X challenges the levy of the tax on the ground that it violates the freedom of

interstate commerce guaranteed under Art 301. Decide.

Course Outcome 6 (CO6):

- 1 Explain the advantages of citizenship.
- 2 List the important principles contained in the directive principles of state policy.
- 3 Discuss the various aspects contained in the preamble of the constitution

Model Question paper

PART A

(Answer all questions. Each question carries 3 marks)

- 1 Define and explain the term constitution.
- 2 Explain the need and importance of Preamble.
- 3 What is directive principle of state policy?
- 4 Define the State.
- 5 List the functions of Attorney general of India.

(10X3=30marks)

6 Explain the review power of Supreme court.

7 List the qualifications of Governor.

8 Explain the term and removal of Judges in High court.

9 Explain the powers of public service commission.

10 List three types of emergency under Indian constitution.

Module 1

PART B

(Answer on question from each module. Each question carries 14 marks)

11 Discuss the various methods of acquiring Indian citizenship.

12 Examine the salient features of the Indian constitution.

Module 2

13 A high court passes a judgement against X. X desires to file a writ petition in the supreme

court under Art32, on the ground that the judgement violates his fundamental rights.

Advise him whether he can do so.

14 What is meant by directive principles of State policy? List the directives.

Module3

15 Describe the procedure of election and removal of the President of India.

16 Supreme court may in its discretion grant special leave to appeal. Examine the situation.

Module 4

17 Discuss the powers of Governor.

18 X filed a writ petition under Art 226 which was dismissed. Subsequently, he filed a writ petition under Art 32 of the constitution, seeking the same remedy. The Government argued that the writ petition should be dismissed, on the ground of res judicata. Decide.

Module 5

19 Examine the scope of the financial relations between the union and the states.

20 Discuss the effects of proclamation of emergency.

(14X5=70marks)

API AByllabuUL KALAM

Module 1 Definition, historical back ground, features, preamble, territory, citizenship.Module 2 State, fundamental rights, directive principles, duties.

Module 3 The machinery of the union government.

Module 4 Government machinery in the states

Module 5 The federal system, Statutory Institutions, miscellaneous provisions.

Text Books

1 D D Basu, Introduction to the constitution of India, Lexis Nexis, New Delhi, 24e, 2019

2 PM Bhakshi, The constitution of India, Universal Law, 14e, 2017

Reference Books

1 Ministry of law and justice, The constitution of India, Govt of India, New Delhi, 2019.

2 JN Pandey, The constitutional law of India, Central Law agency, Allahabad, 51e, 2019

3 MV Pylee, India's Constitution, S Chand and company, New Delhi, 16e, 2016

Course Contents and Lecture Schedule

No	Topic	No. of Lectures			
1	Module 1				
1.1	Definition of constitution, historical back ground, salient features	1			
	of the constitution.				
1.2	Preamble of the constitution, union and its territory.	1			
1.3	Meaning of citizenship, types, termination of citizenship.	2			
2	Module 2				
2.1	Definition of state, fundamental rights, general nature,	2			
	classification, right to equality ,right to freedom , right against				
	exploitation				

2.2	Right to freedom of religion, cultural and educational rights, right	2
	to constitutional remedies. Protection in respect of conviction for	
	offences.	
2.3	Directive principles of state policy, classification of directives,	2
	fundamental duties.	
3	Module 3	
3.1	The Union executive, the President, the vice President, the	2
	council of ministers, the Prime minister, Attorney-General,	A
	functions.	1. A.
3.2	The parliament, composition, Rajya sabha, Lok sabha,	2
	qualification and disqualification of membership, functions of	3750 B
	parliament.	
33	Union judiciary the supreme court jurisdiction appeal by special	1
5.5	leave	-
4	Module 4	
ч Д 1	The State executive the Governor the council of ministers the	2
7.1	Chief minister, advocate general union Territories	2
12	The State Legislature, composition, qualification and	2
7.2	disgualification of membership, functions	2
43	The state judiciary the high court jurisdiction writs jurisdiction	1
5	Module 5	-
51	Relations between the Union and the States Legislative relation	1
5.1	administrative relation financial Relations. Inter State council	-
	finance commission	
5.2	Emergency provision freedom of trade commerce and inter	2
5.2	course comptroller and auditor general of India, public Services	
	nublic service commission, administrative Tribunals	
53	Official language elections special provisions relating to certain	2
5.5	classes amendment of the Constitution	2
	classes, amendment of the constitution.	

CODE	COURSE NAME	CATEGORY	L	Т	Ρ	CREDIT
			2	0	0	2
EST 200	DESIGN AND ENGINEERING					

Preamble:

The purpose of this course is to

i) introduce the undergraduate engineering studentsthe fundamental principles of design engineering,

- ii) make them understand the steps involved in the design process and
- iii) familiarize them with the basic tools used and approaches in design.

Students are expected to apply design thinking in learning as well as while practicing engineering, which is very important and relevant for today. Case studies from various practical situations will help the students realize that design is not only concerned about the function but also many other factors like customer requirements, economics, reliability, etc. along with a variety of life cycle issues.

The course will help students to consider aesthetics, ergonomics and sustainability factors in designs and also to practice professional ethics while designing.

Prerequisite:

Nil.The course will be generic to all engineering disciplines and will not require specialized preparation or prerequisites in any of the individual engineering disciplines.

Course Outcomes:

After the completion of the course the student will be able to

CO 1	Explain the different concepts and principles involved in design engineering.
CO 2	Apply design thinking while learning and practicing engineering.
CO 3	Develop innovative, reliable, sustainable and economically viable designs
	incorporating knowledge in engineering.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО	РО	РО
					1.1					10	11	12
CO 1	2	1					1			1		
CO 2		2				1		1				2
CO 3			2			1	1		2	2		1

Assessment Pattern

Continuous Internal Evaluation (CIE) Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination (ESE) Pattern: There will be two parts; Part A and Part B.

Part A : 30 marks : 70 marks

Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions.

Part B contains 2 case study questions from each module of which student should answer any one. Each question carry 14 marks and can have maximum 2 sub questions.

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours
150	5	100	Shours

2014

Bloom's Category	Continuous Asse	End Semester		
	1	2	Examination	
Remember	5	5	10	
Understand	10	10	20	
Apply	35	35	70	
Analyse			-	
Evaluate	E. Cr			
Create	1. 50	1. A.		

Course Level Assessment Questions

Course Outcome 1 (CO1): Appreciate the different concepts and principles involved in design engineering.

1. State how engineering design is different from other kinds of design

2. List the different stages in a design process.

3. Describedesign thinking.

4. State the function of prototyping and proofing in engineering design.

5. Write notes on the following concepts in connection with design engineering 1) Modular Design,

2) Life Cycle Design , 3) Value Engineering, 4) Concurrent Engineering, and 5) Reverse Engineering

6. State design rights.

Course Outcome 2 (CO2) Apply design thinking while learning and practicing engineering.

1. Construct the iterative process for design thinking in developing simple products like a pen, umbrella, bag, etc.

2. Show with an example how divergent-convergent thinking helps in generating alternative designs and then how to narrow down to the best design.

3. Describe how a problem-based learning helps in creating better design engineering solutions.

4. Discuss as an engineer, how ethics play a decisive role in your designs

Course Outcome 3(CO3): Develop innovative, reliable, sustainable and economically viable designs incorporating different segments of knowledge in engineering.

1. Illustrate the development of any simple product by passing through the different stages of design process

2014

2. Show the graphical design communication with the help of detailed 2D or 3D drawings for any simple product.

3. Describe how to develop new designs for simple products through bio-mimicry.

Model Question paper

Page 1 of 2

Reg No.: ______ Name: _____ APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD/FOURTH SEMESTER B.TECH DEGREE EXAMINATION Course Code: EST 200 Course Name: DESIGN AND ENGINEERING Max. Marks: 100Duration: 3 Hours

PART A

Answer all questions, each question carries 3 marks Use only hand sketches

(1)Write about the basic design process.

- (2) Describe how to finalize the design objectives.
- (3) State the role of divergent-convergent questioning in design thinking.
- (4) Discuss how to perform design thinking in a team managing the conflicts.
- (5) Show how engineering sketches and drawings convey designs.
- (6)Explain the role of mathematics and physics in design engineering process.
- (7) Distinguish between project-based learning and problem-based learning in design engineering.
- (8) Describe how concepts like value engineering , concurrent engineering and reverse engineering influence engineering designs?
- (9) Show how designs are varied based on the aspects of production methods, life span, reliability and environment?
- (10) Explain how economics influence the engineering designs?

(10x3 marks = 30 marks)

Part B

Answer any ONE question from each module. Each question carry 14 marks

Module 1

(11) Show the designing of a wrist watch going through the various stages of the design process. Use hand sketches to illustrate the processes.

or

(12)Find the customer requirements for designing a new car showroom. Show how the design objectives were finalized considering the design constraints?

Module 2

(13)Illustrate the design thinking approach for designing a bag for college students within a limited budget. Describe each stage of the process and the iterative procedure involved. Use hand sketches to support your arguments.

or

(14)Construct a number of possible designs and then refine them to narrow down to the best design for a drug trolley used in hospitals. Show how the divergent-convergent thinking helps in the process. Provide your rationale for each step by using hand sketches only.

Module 3

(15) Graphically communicate the design of a thermo flask used to keep hot coffee. Draw the detailed 2D drawings of the same with design detailing, material selection, scale drawings, dimensions, tolerances, etc. Use only hand sketches.

or

(16)Describe the role of mathematical modelling in design engineering. Show how mathematics and physics play a role in designing a lifting mechanism to raise 100 kg of weight to a floor at a height of 10 meters in a construction site.

Module 4

(17) Show the development of a nature inspired design for a solar poweredbus waiting shed beside a highway. Relate between natural and man-made designs. Use hand sketches to support your arguments.

or

(18)Show the design of a simple sofa and then depict how the design changes when considering 1) aesthetics and 2) ergonomics into consideration. Give hand sketches and explanations to justify the changes in designs.

Module 5

(19)Examine the changes in the design of a foot wear with constraints of 1) production methods, 2) life span requirement, 3) reliability issues and 4) environmental factors. Use hand sketches and give proper rationalization for the changes in design.

or

- (20)Describe the how to estimate the cost of a particular design using ANY of the following:i) a website, ii) the layout of a plant, iii) the elevation of a building, iv) anelectrical or electronic system or device and v) a car.
- Show how economics will influence the engineering designs. Use hand sketches to support your arguments.

(5x14 marks =70 marks)

Syllabus

Module 1

<u>Design Process</u>:- Introduction to Design and Engineering Design, Defining a Design Process-:Detailing Customer Requirements, Setting Design Objectives, Identifying Constraints, Establishing Functions, Generating Design Alternatives and Choosing a Design.

Module 2

<u>Design Thinking Approach:-</u>Introduction to Design Thinking, Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. Design Thinking as Divergent-Convergent Questioning. Design Thinking in a Team Environment.

Module 3

<u>Design Communication</u> (Languages of Engineering Design):-Communicating Designs Graphically, Communicating Designs Orally and in Writing. Mathematical Modeling In Design, Prototyping and Proofing the Design.

Module 4

<u>Design Engineering Concepts:-</u>Project-based Learning and Problem-based Learning in Design.Modular Design and Life Cycle Design Approaches. Application of Biomimicry,Aesthetics and Ergonomics in Design. Value Engineering, Concurrent Engineering, and Reverse Engineering in Design.

Module 5

Expediency, Economics and Environment in Design Engineering:-Design for Production, Use, and Sustainability. Engineering Economics in Design. Design Rights. Ethics in Design

Estd.

2614

Text Books

1) YousefHaik, SangarappillaiSivaloganathan, Tamer M. Shahin, Engineering Design Process, Cengage Learning 2003, Third Edition, ISBN-10: 9781305253285,

2) Voland, G., Engineering by Design, Pearson India 2014, Second Edition, ISBN 9332535051

Reference Books

1.Philip Kosky, Robert Balmer, William Keat, George Wise, Exploring Engineering, Fourth Edition: An Introduction to Engineering and Design, Academic Press 2015, 4th Edition, ISBN: 9780128012420.

2. Clive L. Dym, Engineering Design: A Project-Based Introduction, John Wiley & Sons, New York 2009, Fourth Edition, ISBN: 978-1-118-32458-5

3. Nigel Cross, Design Thinking: Understanding How Designers Think and Work, Berg Publishers 2011, First Edition, ISBN: 978-1847886361

4. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Engineering Design: A Systematic Approach, Springer 2007, Third Edition, ISBN 978-1-84628-319-2

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Module 1: Design Process	
1.1	Introduction to Design and Engineering Design.	
	What does it mean to design something? How Is engineering design different from other kinds of design? Where and when do engineers design? What are the basic vocabularyin engineering design? How to learn and do engineering design.	1
1.2	Defining a Design Process-: Detailing Customer Requirements. How to do engineering design? Illustrate the process with an example. How to identify the customer requirements of design?	L 1
1.3	 Defining a Design Process-: Setting Design Objectives, Identifying Constraints, Establishing Functions. How to finalize the design objectives? How to identify the design constraints? How to express the functions a design in engineering terms? 	1
1.4	Defining a Design Process-: Generating Design Alternatives and Choosing a Design. How to generate or create feasible design alternatives? How to identify the "best possible design"?	1
1.5	Case Studies:- Stages of Design Process. Conduct exercises for designing simple products going through the different stages of design process.	1
2	Module 2: Design Thinking Approach	1.1
2.1	Introduction to Design Thinking How does the design thinking approach help engineers in creating innovative and efficient designs?	1
2.2	Iterative Design Thinking Process Stages: Empathize, Define, Ideate, Prototype and Test. How can the engineers arrive at better designs utilizing the iterative design thinking process (in which knowledge acquired in the later stages can be applied back to the earlier stages)?	1
2.3	Design Thinking as Divergent-Convergent Questioning. Describe how to create a number of possible designs and then how to refine and narrow down to the 'best design'.	1
2.4	Design Thinking in a Team Environment. How to perform design thinking as a team managing the conflicts ?	1
2.5	Case Studies: Design Thinking Approach. Conduct exercises using the design thinking approach for	1

	<i>designing any simple products within a limited time and</i> budget	
3	Module 3: Design Communication (Languages of Engineering	g Design)
3.1	Communicating Designs Graphically.	1
	How do engineering sketches and drawings convey designs?	1
3.2	Communicating Designs Orally and in Writing.	
	How can a design be communicated through oral	1
	presentation or technical reports efficiently?	1
	First Series Examination	V1
3.3	Mathematical Modelling in Design.	
	How do mathematics and physics become a part of the	1
2.4	design process?	
3.4	Prototyping and Proofing the Design.	1
	How to predict whether the design will function well or not?	
3.5	Case Studies: Communicating Designs Graphically.	
	Conduct exercises for design communication through	1
	detailed 2D or 3D drawings of simple products with	1
	design detailing, material selection, scale drawings, dimensions, tolorgnoos, etc.	
1	Module 4: Design Engineering Concents	
	Project based Learning and Problem based Learning in	1
4.1	Design.	1
	How engineering students can learn design engineering	
	through projects?	
	How students can take up problems to learn design	
12	engineering? Modular Design and Life Cycle Design Approaches	1
4.2	Wooddaar Design and Ene Cycle Design Approaches.	1
	What is modular approach in design engineering? How it helps?	2
	How the life cycle design approach influences design	.00
	decisions?	
4.3	Application of Bio-mimicry, Aesthetics and Ergonomics	1
	in Design.	
	How do aesthetics and ergonomics change engineering	
	designs?	
	How do the intelligence in nature inspire engineering	
	in engineering?	
4.4	Value Engineering, Concurrent Engineering, and Reverse	1
	Engineering in Design.	
	How do concepts like value engineering , concurrent	
	engineering and reverse engineering influence	
	engineering designs?	
4.5	Case Studies: Bio-mimicry based Designs.	1
	Conduct exercises to develop new designs for simple	

	products using bio-mimicry and train students to bring out						
	new nature inspired designs.						
5	Module 5: Expediency, Economics and Environment in Desig	<u>yn</u>					
	Engineering						
5.1	Design for Production, Use, and Sustainability.	1					
	How designs are finalized based on the aspects of						
	production methods, life span, reliability and						
	environment?						
5.2	Engineering Economics in Design.	1					
	How to estimate the cost of a particular design and how						
	will economics influence the engineering designs?						
5.3	Design Rights.	1					
	What are design rights and how can an engineer put it						
	into practice?						
5.4	Ethics in Design.	1					
	How do ethics play a decisive role in engineering design?						
5.5	Case Studies: Design for Production, Use, and	1					
	Sustainability.						
	Conduct exercises using simple products to show how designs						
	change with constraints of production methods, life span						
	requirement, reliability issues and environmental factors.						
	Second Series Examination						

Code.	Course Name	L	Т	Р	Hrs	Credit
HUT 200	Professional Ethics	2	0	0	2	2

Preamble: To enable students to create awareness on ethics and human values.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to N 6 17

CO 1	Understand the core values that shape the ethical behaviour of a professional.							
CO 2	Adopt a good character and follow an ethical life.							
CO 3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.							
CO 4	Solve moral and ethical problems through exploration and assessment by established experiments.							
CO 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.							

Mapping of course outcomes with program outcomes

1

	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1
	1			14						0	1	2
CO 1								2			2	
CO 2								2			2	
CO 3				ļ				3			2	
CO 4				Ì	Ś.			3			2	
CO 5						1		3	-		2	

Assessment Pattern

Bloom's category	Continuous Assessme	End Semester Exam		
	1	2		
Remember	15	15	30	
Understood	20	20	40	
Apply	15	15	30	

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	:	10 marks
Continuous Assessment Tests (2 Nos)	:	25 marks
Assignments/Quiz	:	15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Define integrity and point out ethical values.
- 2. Describe the qualities required to live a peaceful life.
- 3. Explain the role of engineers in modern society.

Course Outcome 2 (CO2)

- 1. Derive the codes of ethics.
- 2. Differentiate consensus and controversy.
- 3. Discuss in detail about character and confidence.

Course Outcome 3(CO3):

- 1. Explain the role of professional's ethics in technological development.
- 2. Distinguish between self interest and conflicts of interest.
- 3. Review on industrial standards and legal ethics.

Course Outcome 4 (CO4):

- 1. Illustrate the role of engineers as experimenters.
- 2. Interpret the terms safety and risk.
- 3. Show how the occupational crimes are resolved by keeping the rights of employees.

Course Outcome 5 (CO5):

- 1. Exemplify the engineers as managers.
- 2. Investigate the causes and effects of acid rain with a case study.
- 3. Explorate the need of environmental ethics in technological development.

Model Question paper

QP CODE:	Reg No:
PAGES:3	Name :
APJ ABDUL KALAM TECHNOLOGICAL UNIVE B.TECH DEGREE EXAMINATIO Course Code: HU Course Name: PROFESSIO Max. Marks: 100 (2019-Scheme PART A	RSITY THIRD/FOURTH SEMESTER N, MONTH & YEAR T 200 NAL ETHICS Duration: 3 Hours
(Answer all questions, each qu	uestion carries 3 marks)
1. Define empathy and honesty.	
2. Briefly explain about morals, values and ethics.	
3. Interpret the two forms of self-respect.	
4. List out the models of professional roles.	
5. Indicate the advantages of using standards.	
6. Point out the conditions required to define a valid c	consent?
7. Identify the conflicts of interests with an example?	
8. Recall confidentiality.	
9. Conclude the features of biometric ethics.	
10. Name any three professional societies and their role	e relevant to engineers.
	(10x3 = 30 marks)
PART B	
(Answer one full question from each module, ea	ch question carries 14 marks)
MODULE I	
11. a) Classify the relationship between ethical values and l	law?
b) Compare between caring and sharing.	(10+4 = 14 marks)

Or

12. a) Exemplify a comprehensive review about integrity and respect for others.

(8+6 = 14 marks)

(8+6 = 14 marks)

(8+6 = 14 marks)

(8+6 = 14 marks)

MODULE II

13.a) Explain the three main levels of moral developments, deviced by Kohlberg.

b) Differentiate moral codes and optimal codes. (10+4 = 14 marks)

Or

14. a) Extrapolate the duty ethics and right ethics.

b) Discuss in detail the three types of inquiries in engineering ethics (8+6 = 14 marks)

MODULE III

15.a) Summarize the following features of morally responsible engineers.

(i) Moral autonomy

(ii) Accountability

b)Explain the rights of employees

Or

16. a) Explain the reasons for Chernobyl mishap?

b) Describe the methods to improve collegiality and loyalty.

MODULE IV

17.a) Execute collegiality with respect to commitment, respect and connectedness.

b) Identify conflicts of interests with an example.

Or

18. a) Explain in detail about professional rights and employee rights.

b) Exemplify engineers as managers.

MODULE V

19.a) Evaluate the technology transfer and appropriate technology.

b) Explain about computer and internet ethics.

Or

(8+6 = 14 marks)

20. a) Investigate the causes and effects of acid rain with a case study.

b) Conclude the features of ecocentric and biocentric ethics. (8+6 = 14 marks)

<u>Syllabus</u>

Module 1 – Human Values.

Morals, values and Ethics – Integrity- Academic integrity-Work Ethics- Service Learning- Civic Virtue-Respect for others- Living peacefully- Caring and Sharing- Honestly- courage-Cooperation commitment-Empathy-Self Confidence -Social Expectations.

Module 2 - Engineering Ethics & Professionalism.

Senses of Engineering Ethics - Variety of moral issues- Types of inquiry- Moral dilemmas –Moral Autonomy – Kohlberg's theory- Gilligan's theory- Consensus and Controversy-Profession and Professionalism- Models of professional roles-Theories about right action –Self interest-Customs and Religion- Uses of Ethical Theories.

Module 3- Engineering as social Experimentation.

Engineering as Experimentation – Engineers as responsible Experimenters- Codes of Ethics- Plagiarism-A balanced outlook on law - Challenges case study- Bhopal gas tragedy.

Module 4- Responsibilities and Rights.

Collegiality and loyalty – Managing conflict- Respect for authority- Collective bargaining- Confidentiality-Role of confidentiality in moral integrity-Conflicts of interest- Occupational crime- Professional rights-Employee right- IPR Discrimination.

Module 5- Global Ethical Issues.

Multinational Corporations- Environmental Ethics- Business Ethics- Computer Ethics -Role in Technological Development-Engineers as Managers- Consulting Engineers- Engineers as Expert witnesses and advisors-Moral leadership.

Text Book

- 1. M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi,2012.
- 2. R S Naagarazan, A text book on professional ethics and human values, New age international (P) limited ,New Delhi,2006.

2014

Reference Books

- 1. Mike W Martin and Roland Schinzinger, Ethics in Engineering,4th edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi,2014.
- 2. Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
- 3. Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics- Concepts and cases, Wadsworth Thompson Learning, United states, 2005.
- 4. http://www.slideword.org/slidestag.aspx/human-values-and-Professional-ethics.

Course Contents and Lecture Schedule

SL.N	Торіс	No. of Lectures	
ο		25	
1	Module 1 – Human Values.		
1.1	Morals, values and Ethics, Integrity, Academic Integrity, Work Ethics	1	
1.2	Service Learning, Civic Virtue, Respect for others, Living peacefully	1	
1.3	Caring and Sharing, Honesty, Courage, Co-operation commitment	2	
1.4	Empathy, Self Confidence, Social Expectations	1	
2	Module 2- Engineering Ethics & Professionalism.		
2.1	Senses of Engineering Ethics, Variety of moral issues, Types of inquiry	1	
2.2	Moral dilemmas, Moral Autonomy, Kohlberg's theory	1	
2.3	Gilligan's theory, Consensus and Controversy, Profession& Professionalism, Models of professional roles, Theories about right action	2	
2.4	Self interest-Customs and Religion, Uses of Ethical Theories	1	
3	Module 3- Engineering as social Experimentation.		
3.1	Engineering as Experimentation, Engineers as responsible Experimenters	1	
3.2	Codes of Ethics, Plagiarism, A balanced outlook on law	2	
3.3	Challenger case study, Bhopal gas tragedy	2	
4	Module 4- Responsibilities and Rights.		
4.1	Collegiality and loyalty, Managing conflict, Respect for authority	1	
4.2	Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Conflicts of interest	2	
4.3	Occupational crime, Professional rights, Employee right, IPR Discrimination	2	
5	Module 5- Global Ethical Issues.	63	
5.1	Multinational Corporations, Environmental Ethics, Business Ethics, Computer Ethics	2	
5.2	Role in Technological Development, Moral leadership	1	
5.3	Engineers as Managers, Consulting Engineers, Engineers as Expert witnesses and advisors	2	

<u>COMMON COURSES</u> (S5 & S6)

Estd.

2014

MCN 301	DISASTER MANAGEMENT	Category	L	Т	Р	CREDIT	YEAR OF INTRODUCTION
		Non - Credit	2	0	0	Nil	2019

Preamble: The objective of this course is to introduce the fundamental concepts of hazards and disaster management.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO1	Define and use various terminologies in use in disaster management parlance and organise each of these terms in relation to the disaster management cycle (Cognitive knowledge level: Understand).
CO2	Distinguish between different hazard types and vulnerability types and do vulnerability assessment (Cognitive knowledge level: Understand).
CO3	Identify the components and describe the process of risk assessment, and apply appropriate methodologies to assess risk (Cognitive knowledge level: Understand).
CO4	Explain the core elements and phases of Disaster Risk Management and develop possible measures to reduce disaster risks across sector and community (Cognitive knowledge level: Apply)
CO5	Identify factors that determine the nature of disaster response and discuss the various disaster response actions (Cognitive knowledge level: Understand).
CO6	Explain the various legislations and best practices for disaster management and risk reduction at national and international level (Cognitive knowledge level: Understand).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	PO1 1	PO1 2
C01		2				2				2		2
CO2	2	3	2		2	2	3			3		2
CO3	2	3	2	2	2	2	3			3		2
CO4	3	3	3		2	2	3					2
C05	3	3			2	2	3					2
CO6	3					2	3	3				2

Mapping of course outcomes with program outcomes

	Abstract POs defined by National Board of Accreditation							
PO#	Broad PO	PO#	Broad PO					
PO1	Engineering Knowledge	PO7	Environment and Sustainability					
PO2	Problem Analysis	PO8	Ethics					
PO3	Design/Development of solutions	PO9	Individual and team work					
PO4	Conduct investigations of complex problems	PO10	Communication					
PO5	Modern tool usage	PO11	Project Management and Finance					
PO6	The Engineer and Society	PO12	Life long learning					

Assessment Pattern

Bloom's Category	Continuous A	End Semester		
	Test 1 (Marks)	Test 2 (Marks)	Examination Marks	
Remember	10	10	20	
Understand	25	25	50	
Apply	15	15	30	
Analyze				
Evaluate				
Create				

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance: 10 marksContinuous Assessment - Test: 25 marks

Continuous Assessment - Assignment : 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A.

Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

SYLLABUS

MCN 301 Disaster Management

Module 1

Systems of earth

Lithosphere- composition, rocks, soils; Atmosphere-layers, ozone layer, greenhouse effect, weather, cyclones, atmospheric circulations, Indian Monsoon; hydrosphere- Oceans, inland water bodies; biosphere

Definition and meaning of key terms in Disaster Risk Reduction and Management- disaster, hazard, exposure, vulnerability, risk, risk assessment, risk mapping, capacity, resilience, disaster risk reduction, disaster risk management, early warning systems, disaster preparedness, disaster prevention, disaster mitigation, disaster response, damage assessment, crisis counselling, needs assessment.

Module 2

Hazard types and hazard mapping; Vulnerability types and their assessment- physical, social, economic and environmental vulnerability.

Disaster risk assessment –approaches, procedures

Module 3

Disaster risk management -Core elements and phases of Disaster Risk Management

Measures for Disaster Risk Reduction – prevention, mitigation, and preparedness.

Disaster response- objectives, requirements; response planning; types of responses.

Relief; international relief organizations.

Module 4

Participatory stakeholder engagement; Disaster communication- importance, methods, barriers; Crisis counselling

Capacity Building: Concept – Structural and Non-structural Measures, Capacity Assessment; Strengthening Capacity for Reducing Risk

Module 5

Common disaster types in India; Legislations in India on disaster management; National disaster management policy; Institutional arrangements for disaster management in India.

The Sendai Framework for Disaster Risk Reduction- targets, priorities for action, guiding principles

Reference Text Book

- 1. R. Subramanian, Disaster Management, Vikas Publishing House, 2018
- 2. M. M. Sulphey, Disaster Management, PHI Learning, 2016
- 3. UNDP, Disaster Risk Management Training Manual, 2016

4. United Nations Office for Disaster Risk Reduction, Sendai Framework for Disaster Risk Reduction 2015-2030, 2015

Sample Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. What is the mechanism by which stratospheric ozone protects earth from harmful UV rays?
- 2. What are disasters? What are their causes?
- 3. Explain the different types of cyclones and the mechanism of their formation
- 4. Explain with examples, the difference between hazard and risk in the context of disaster management
- 5. Explain the following terms in the context of disaster management (a) exposure (b) resilience (c) disaster risk management (d) early warning systems, (e) damage assessment (f) crisis counselling (g) needs assessment

Course Outcome 2 (CO2):

- 1. What is hazard mapping? What are its objectives?
- 2. What is participatory hazard mapping? How is it conducted? What are its advantages?
- 3. Explain the applications of hazard maps
- 4. Explain the types of vulnerabilities and the approaches to assess them

Course Outcome 3 (CO3):

1. Explain briefly the concept of 'disaster risk'

- 2. List the strategies for disaster risk management 'before', 'during' and 'after' a disaster
- 3. What is disaster preparedness? Explain the components of a comprehensive disaster preparedness strategy

Course Outcome 4 (CO4):

- 1. What is disaster prevention? Distinguish it from disaster mitigation giving examples
- 2. What are the steps to effective disaster communication? What are the barriers to communication?
- 3. Explain capacity building in the context of disaster management

Course Outcome 5 (CO5):

- 1. Briefly explain the levels of stakeholder participation in the context of disaster risk reduction
- 2. Explain the importance of communication in disaster management
- 3. Explain the benefits and costs of stakeholder participation in disaster management
- 4. How are stakeholders in disaster management identified?

Course Outcome 6 (CO6):

- 1. Explain the salient features of the National Policy on Disaster Management in India
- 2. Explain the guiding principles and priorities of action according to the Sendai Framework for Disaster Risk Reduction
- 3. What are Tsunamis? How are they caused?
- 4. Explain the earthquake zonation of India

Model Question paper

QP CODE:

Reg No:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: MCN 301

Course Name: Disaster Management

Max.Marks:100

Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

- What is the mechanism by which stratospheric ozone protects earth from harmful UV 1. rays?
- 2. What are disasters? What are their causes?
- What is hazard mapping? What are its objectives? 3.
- Explain briefly the concept of 'disaster risk' 4.
- 5. List the strategies for disaster risk management 'before', 'during' and 'after' a disaster
- What is disaster prevention? Distinguish it from disaster mitigation giving examples 6.
- Briefly explain the levels of stakeholder participation in the context of disaster risk 7. reduction
- 8. Explain the importance of communication in disaster management
- 9. What are Tsunamis? How are they caused?
- 10. Explain the earthquake zonation of India

Part B

Answer any one Question from each module. Each question carries 14 Marks

PAGES:3

Name :_____

11. a. Explain the different types of cyclones and the mechanism of their formation [10]

b. Explain with examples, the difference between hazard and risk in the context of disaster management

[4]

OR

12. Ex	plain the following terms in the context of disaster management	[14]
(a) exp assess	posure (b) resilience (c) disaster risk management (d) early warning systems, (e) ment (f) crisis counselling (g) needs assessment	damage
13.	a. What is participatory hazard mapping? How is it conducted? What are its advan	itages?
		[8]
	b. Explain the applications of hazard maps	[6]
	OR	
14.	Explain the types of vulnerabilities and the approaches to assess them	[14]
15.	a. Explain the core elements of disaster risk management	[8]
	b. Explain the factors that decide the nature of disaster response	[6]
	OR	
16.	a. What is disaster preparedness? Explain the components of a comprehensive preparedness strategy	disaster [6]
	b. Explain the different disaster response actions	[8]
17.	a. Explain the benefits and costs of stakeholder participation in disaster management	ent [10]
	b. How are stakeholders in disaster management identified?	[4]
	OR	

- 18. a. What are the steps to effective disaster communication? What are the barriers to communication? [7]
 - b. Explain capacity building in the context of disaster management [7]

19. Explain the salient features of the National Policy on Disaster Management in India

[14]

OR

20. Explain the guiding principles and priorities of action according to the Sendai Framework for Disaster Risk Reduction [14]
Teaching Plan

	Module 1	5 Hours
1.1	Introduction about various Systems of earth, Lithosphere- composition, rocks, Soils; Atmosphere-layers, ozone layer, greenhouse effect, weather	1 Hour
1.2	Cyclones, atmospheric circulations, Indian Monsoon; hydrosphere- Oceans, inland water bodies; biosphere	1 Hour
1.3	Definition and meaning of key terms in Disaster Risk Reduction and Management- disaster, hazard,	1 Hour
1.4	Exposure, vulnerability, risk, risk assessment, risk mapping, capacity, resilience, disaster risk reduction, Disaster risk management, early warning systems	1 Hour
1.5	Disaster preparedness, disaster prevention, disaster, Mitigation, disaster response, damage assessment, crisis counselling, needs assessment.	1 Hour
	Module 2	5 Hours
2.1	Various Hazard types, Hazard mapping; Different types of Vulnerability types and their assessment	1 Hour
2.2	Vulnerability assessment and types, Physical and social vulnerability	1 Hour
2.3	Economic and environmental vulnerability, Core elements of disaster risk assessment	1 Hour
2.4	Components of a comprehensive disaster preparedness strategy approaches, procedures	1 Hour
2.5	Different disaster response actions	1 Hour
	Module 3	5 Hours
3.1	Introduction to Disaster risk management, Core elements of Disaster Risk Management	1 Hour
3.2	Phases of Disaster Risk Management, Measures for Disaster Risk Reduction	1 Hour
3.3	Measures for Disaster prevention, mitigation, and preparedness.	1 Hour

3.4	Disaster response- objectives, requirements. Disaster response planning; types of responses.	1 Hour
3.5	Introduction- Disaster Relief, Relief; international relief organizations.	1 Hour
	Module 4	5 Hours
4.1	Participatory stakeholder engagement	1 Hour
4.2	Importance of disaster communication.	1 Hour
4.3	Disaster communication- methods, barriers. Crisis counselling	1 Hour
4.4	Introduction to Capacity Building. Concept – Structural Measures, Non-structural Measures.	
4.5	Introduction to Capacity Assessment, Capacity Assessment; Strengthening, Capacity for Reducing Risk	1 Hour
	Module 5	5 Hours
5.1	Introduction-Common disaster types in India.	1 Hour
5.2	Common disaster legislations in India on disaster management	1 Hour
5.3	National disaster management policy, Institutional arrangements for disaster management in India.	1 Hour
5.4	The Sendai Framework for Disaster Risk Reduction and targets	1 Hour
5.5	The Sendai Framework for Disaster Risk Reduction-priorities for action, guiding principles	1 Hour

HUT 300	Industrial Economics &	Category	L	Т	Р	CREDIT
	Foreign Trade	HSMC	3	0	0	3

Preamble: To equip the students to take industrial decisions and to create awareness of economic environment.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO1	Explain the problem of scarcity of resources and consumer behaviour, and to evaluate the impact of government policies on the general economic welfare. (Cognitive knowledge level: Understand)
CO2	Take appropriate decisions regarding volume of output and to evaluate the social cost of production. (Cognitive knowledge level: Apply)
CO3	Determine the functional requirement of a firm under various competitive conditions. (Cognitive knowledge level: Analyse)
CO4	Examine the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society. (Cognitive knowledge level: Analyse)
CO5	Determine the impact of changes in global economic policies on the business opportunities of a firm. (Cognitive knowledge level: Analyse)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2										3	
CO2	2	2			2	2	3				3	
CO3	2	2	1								3	
CO4	2	2	1			1					3	
C05	2	2	1								3	

Abstract POs defined by National Board of Accreditation						
PO#	Broad PO	PO#	Broad PO			
PO1	Engineering Knowledge	PO7	Environment and Sustainability			
PO2	Problem Analysis	PO8	Ethics			
PO3	Design/Development of solutions	PO9	Individual and team work			
PO4	Conduct investigations of complex problems	PO10	Communication			
PO5	Modern tool usage	PO11	Project Management and Finance			
PO6	The Engineer and Society	PO12	Lifelong learning			

Assessment Pattern

Bloom's Category	Continuous A	End Semester	
	Test 1 (Marks)	Test 2 (Marks)	Examination Marks
Remember	15	15	30
Understand	20	20	40
Apply	15	15	30

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment - Test (2 numbers)	: 25 marks
Continuous Assessment - Assignment	: 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B.

Part A : 30 marks

Part B : 70 marks

Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 3 sub-divisions and carries 14 marks.

SYLLABUS

HUT 300 Industrial Economics & Foreign Trade

Module 1 (Basic Concepts and Demand and Supply Analysis)

Scarcity and choice - Basic economic problems- PPC – Firms and its objectives – types of firms – Utility – Law of diminishing marginal utility – Demand and its determinants – law of demand – elasticity of demand – measurement of elasticity and its applications – Supply, law of supply and determinants of supply – Equilibrium – Changes in demand and supply and its effects – Consumer surplus and producer surplus (Concepts) – Taxation and deadweight loss.

Module 2 (Production and cost)

Production function – law of variable proportion – economies of scale – internal and external economies – Isoquants, isocost line and producer's equilibrium – Expansion path – Technical progress and its implications – Cobb-Douglas production function - Cost concepts – Social cost: private cost and external cost – Explicit and implicit cost – sunk cost - Short run cost curves - long run cost curves – Revenue (concepts) – Shutdown point – Break-even point.

Module 3 (Market Structure)

Perfect and imperfect competition – monopoly, regulation of monopoly, monopolistic completion (features and equilibrium of a firm) – oligopoly – Kinked demand curve – Collusive oligopoly (meaning) – Non-price competition – Product pricing – Cost plus pricing – Target return pricing – Penetration pricing – Predatory pricing – Going rate pricing – Price skimming.

Module 4 (Macroeconomic concepts)

Circular flow of economic activities – Stock and flow – Final goods and intermediate goods -Gross Domestic Product - National Income – Three sectors of an economy- Methods of measuring national income – Inflation- causes and effects – Measures to control inflation-Monetary and fiscal policies – Business financing- Bonds and shares -Money market and Capital market – Stock market – Demat account and Trading account - SENSEX and NIFTY.

Module 5 (International Trade)

Advantages and disadvantages of international trade - Absolute and Comparative advantage theory - Heckscher - Ohlin theory - Balance of payments – Components – Balance of Payments

deficit and devaluation – Trade policy – Free trade versus protection – Tariff and non-tariff barriers.

Reference Materials

- 1. Gregory N Mankiw, 'Principles of Micro Economics', Cengage Publications
- 2. Gregory N Mankiw, 'Principles of Macro Economics', Cengage Publications
- 3. Dwivedi D N, 'Macro Economics', Tata McGraw Hill, New Delhi.
- 4. Mithani D M, 'Managerial Economics', Himalaya Publishing House, Mumbai.
- 5. Francis Cherunilam, 'International Economics', McGraw Hill, New Delhi.

Sample Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Why does the problem of choice arise?
- 2. What are the central problems?
- 3. How do we solve the basic economic problems?
- 4. What is the relation between price and demand?
- 5. Explain deadweight loss due to the imposition of a tax.

Course Outcome 2 (CO2):

- 1. What is shutdown point?
- 2. What do you mean by producer equilibrium?
- 3. Explain break-even point;

4. Suppose a chemical factory is functioning in a residential area. What are the external costs?

Course Outcome 3 (CO3):

- 1. Explain the equilibrium of a firm under monopolistic competition.
- 2. Why is a monopolist called price maker?
- 3. What are the methods of non-price competition under oligopoly?

4. What is collusive oligopoly?

Course Outcome 4 (CO4):

- 1. What is the significance of national income estimation?
- 2. How is GDP estimated?
- 3. What are the measures to control inflation?
- 4. How does inflation affect fixed income group and wage earners?

Course Outcome 5 (CO5):

- 1. What is devaluation?
- 2. Suppose a foreign country imposes a tariff on Indian goods. How does it affect India's exports?
- 3. What is free trade?
- 4. What are the arguments in favour of protection?

Model Question paper

QP CODE:

Reg No:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH /SIXTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: HUT 300

Course Name: Industrial Economics & Foreign Trade

Max.Marks:100

Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

- 1. Why does an economic problem arise?
- 2. What should be the percentage change in price of a product if the sale is to be increased by 50 percent and its price elasticity of demand is 2?
- 3. In the production function $Q = 2L^{1/2}K^{1/2}$ if L=36 how many units of capital are needed to

produce 60 units of output?

- 4. Suppose in the short run AVC 4. Suppose in the short run AVC<P<AC. Will this firm produce or shut down? Give reason.
- 5. What is predatory pricing?
- 6. What do you mean by non- price competition under oligopoly?
- 7. What are the important economic activities under primary sector?
- 8. Distinguish between a bond and share?
- 9. What are the major components of balance of payments?

PAGES:3

Name :

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Prepare a utility schedule showing units of consumption, total utility and marginal utility, and explain the law of diminishing marginal utility. Point out any three limitations of the law.

b) How is elasticity of demand measured according to the percentage method? How is the measurement of elasticity of demand useful for the government?

Or

12. a) Explain the concepts consumer surplus and producer surplus.

b) Suppose the government imposes a tax on a commodity where the tax burden met by the consumers. Draw a diagram and explain dead weight loss. Mark consumer surplus, producer surplus, tax revenue and dead weight loss in the diagram.

MODULE II

13. a) What are the advantages of large-scale production?

b) Explain Producer equilibrium with the help of isoquants and isocost line. What is expansion path?

Or

14. a) Explain break-even analysis with the help of a diagram.

b) Suppose the monthly fixed cost of a firm is Rs. 40000 and its monthly total variable cost is Rs. 60000.

- i. If the monthly sales is Rs. 120000 estimate contribution and break-even sales.
- ii. If the firm wants to get a monthly profit of Rs.40000, what should be the sales?
- c) The total cost function of a firm is given as $TC=100+50Q 11Q^2+Q^3$. Find marginal cost when output equals 5 units.

MODULE III

15. a) What are the features of monopolistic competition?

b) Explain the equilibrium of a firm earning supernormal profit under monopolistic competition.

Or

16.a) Make comparison between perfect competition and monopoly.

b) Explain price rigidity under oligopoly with the help of a kinked demand curve.

MODULE IV

17. a) How is national income estimated under product method and expenditure method?

b) Estimate GDPmp, GNPmp and National income

Private consumption	= 2000 (in 000 cores)
Government Consumption	= 500
NFIA	= -(300)
Investment	= 800
Net=exports	=700
Depreciation	=400
Net-indirect tax	= 300

Or

- 18. a) What are the monetary and fiscal policy measures to control inflation?
 - b) What is SENSEX?

MODULE V

- 19. a) What are the advantages of disadvantages of foreign trade?
 - b) Explain the comparative cost advantage.

Or

- 20. a) What are the arguments in favour protection?
 - b) Examine the tariff and non-tariff barriers to international trade.

 $(5 \times 14 = 70 \text{ marks})$

Module 1 (Basic concepts and Demand and Supply Analysis)			
1.1	Scarcity and choice – Basic economic problems - PPC	1 Hour	
1.2	Firms and its objectives – types of firms	1 Hour	
1.3	Utility – Law of diminishing marginal utility – Demand – law of demand	1 Hour	
1.4	Measurement of elasticity and its applications	1 Hour	
1.5	Supply, law of supply and determinants of supply	1 Hour	
1.6	Equilibrium – changes in demand and supply and its effects	1 Hour	
1.7	Consumer surplus and producer surplus (Concepts) – Taxation and deadweight loss.	1 Hour	
	Module 2 (Production and cost)	7 Hours	
2.1	Productions function – law of variable proportion	1 Hour	
2.2	Economies of scale – internal and external economies	1 Hour	
2.3	producers equilibrium – Expansion path	1 Hour	
2.4	Technical progress and its implications – cob Douglas Production function	1 Hour	
2.5	Cost concepts – social cost: private cost and external cost – Explicit and implicit cost – sunk cost	1 Hour	
2.6	Short run cost curves & Long run cost curves	1 Hour	
2.7	Revenue (concepts) – shutdown point – Break-even point.	1 Hour	
	Module 3 (Market Structure)	6 hours	
3.1	Equilibrium of a firm, MC – MR approach and TC – TR approach	1 Hour	
3.2	Perfect competition & Imperfect competition	1 Hour	
3.3	Monopoly – Regulation of monopoly – Monopolistic competition	1 Hour	
3.4	Oligopoly – kinked demand curve	1 Hour	
3.5	Collusive oligopoly (meaning) – Non price competition	1 Hour	
3.6	Cost plus pricing – Target return pricing – Penetration, Predatory pricing – Going rate pricing – price skimming	1 Hour	

Teaching Plan

Module 4 (Macroeconomic concepts)				
4.1	Circular flow of economic activities	1 Hour		
4.2	Stock and flow – Final goods and intermediate goods – Gross Domestic Product - National income – Three sectors of an economy	1 Hour		
4.3	Methods of measuring national income	1 Hour		
4.4	Inflation – Demand pull and cost push – Causes and effects	1 Hour		
4.5	Measures to control inflation – Monetary and fiscal policies	1 Hour		
4.6	Business financing – Bonds and shares – Money market and capital market	1 Hour		
4.7	Stock market – Demat account and Trading account – SENSEX and NIFTY	1 Hour		
Module 5 (International Trade)				
5.1	Advantages and disadvantages of international trade	1 Hour		
5.2	Absolute and comparative advantage theory	2 Hour		
5.3	Heckscher – Ohlin theory	1 Hour		
5.4	Balance of payments - components	1 Hour		
5.5	Balance of payments deficit and devaluation	1 Hour		
5.6	Trade policy – Free trade versus protection	1 Hour		
5.7	Tariff and non tariff barriers.	1 Hour		

HUT		Category	L	Т	Р	Credit
310	Management for Engineers	НМС	3	0	0	3

Preamble: This course is intended to help the students to learn the basic concepts and functions of management and its role in the performance of an organization and to understand various decision-making approaches available for managers to achieve excellence. Learners shall have a broad view of different functional areas of management like operations, human resource, finance and marketing.

Prerequisite: Nil

Course Outcomes After the completion of the course the student will be able to

CO1	Explain the characteristics of management in the contemporary context (Cognitive
	Knowledge level: Understand).
CO2	Describe the functions of management (Cognitive Knowledge level: Understand).
CO3	Demonstrate ability in decision making process and productivity analysis (Cognitive
	Knowledge level: Understand).
COA	Illustrate project management technique and develop a project schedule (Cognitive
CO4	Knowledge level: Apply).
COS	Summarize the functional areas of management (Cognitive Knowledge level:
	Understand).
COC	Comprehend the concept of entrepreneurship and create business plans (Cognitive
	Knowledge level: Understand).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2				1	2	2	2		2	1	1
CO2	2				1	1		2	1	2	1	1
CO3	2	2	2	2	1							
CO4	2	2	2	2	1						2	1
CO5	2					1	1		1	2	1	
CO6		2	2	2	1	1	1	1	1	1	1	1

Mapping of course outcomes with program outcomes

Abstract POs defined by National Board of Accreditation					
PO1	Engineering Knowledge	PO7	Environment and Sustainability		
PO2	Problem Analysis	PO8	Ethics		
PO3	Design/Development of solutions	PO9	Individual and team work		
PO4	Conduct investigations of complex problems	PO10	Communication		
PO5	Modern tool usage	PO11	Project Management and Finance		
PO6	The Engineer and Society	PO12	Life long learning		

Assessment Pattern

Bloom's	Test 1 (Marks in	Test 2 (Marks in	End Semester Examination
Category	percentage)	percentage)	(Marks in percentage)
Remember	15	15	30
Understand	15	15	30
Apply	20	20	40
Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 Hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment - Test	: 25 marks
Continuous Assessment - Assignment	: 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

SYLLABUS

HUT 310 Management for Engineers (35 hrs)

Module 1 (Introduction to management Theory- 7 Hours)

Introduction to management theory, Management Defined, Characteristic of Management, Management as an art-profession, System approaches to Management, Task and Responsibilities of a professional Manager, Levels of Manager and Skill required.

Module 2 (management and organization- 5 hours)

Management Process, Planning types, Mission, Goals, Strategy, Programmes, Procedures, Organising, Principles of Organisation, Delegation, Span of Control, Organisation Structures, Directing, Leadership, Motivation, Controlling..

Module 3 (productivity and decision making- 7 hours)

Concept of productivity and its measurement; Competitiveness; Decision making process; decision making under certainty, risk and uncertainty; Decision trees; Models of decision making.

. Module 4 (project management- 8 hours)

Project Management, Network construction, Arrow diagram, Redundancy. CPM and PERT Networks, Scheduling computations, PERT time estimates, Probability of completion of project, Introduction to crashing.

Module 5 (functional areas of management- 8 hours)

Introduction to functional areas of management, Operations management, Human resources management, Marketing management, Financial management, Entrepreneurship, Business plans, Corporate social responsibility, Patents and Intellectual property rights.

References:

- H. Koontz, and H. Weihrich, Essentials of Management: An International Perspective. 8th ed., McGraw-Hill, 2009.
- 2. P C Tripathi and P N Reddy, Principles of management, TMH, 4th edition, 2008.
- 3. P. Kotler, K. L. Keller, A. Koshy, and M. Jha, Marketing Management: A South Asian Perspective. 14th ed., Pearson, 2012.
- 4. M. Y. Khan, and P. K. Jain, Financial Management, Tata-McGraw Hill, 2008.
- 5. R. D. Hisrich, and M. P. Peters, Entrepreneurship: Strategy, Developing, and Managing a New Enterprise, 4th ed., McGraw-Hill Education, 1997.
- D. J. Sumanth, Productivity Engineering and Management, McGraw-Hill Education, 1985.
- K.Ashwathappa, 'Human Resources and Personnel Management', TMH, 3 rd edition, 2005.
- R. B. Chase, Ravi Shankar and F. R. Jacobs, Operations and Supply Chain Management, 14th ed. McGraw Hill Education (India), 2015.

Sample Course Level Assessment Questions

Course Outcome1 (CO1): Explain the systems approach to management?

Course Outcome 2 (CO2): Explain the following terms with a suitable example Goal, Objective, and Strategy.

Course Outcome 3 (CO3): Mr. Shyam is the author of what promises to be a successful novel. He has the option to either publish the novel himself or through a publisher. The publisher is offering Mr. Shyam Rs. 20,000 for signing the contract. If the novel is successful, it will sell 200,000 copies. Else, it will sell 10,000 copies only. The publisher pays a Re. 1 royalty per copy. A market survey indicates that there is a 70% chance that the novel will be successful. If Mr. Shyam undertakes publishing, he will incur an initial cost of Rs. 90,000 for printing and marketing., but each copy sold will net him Rs. 2. Based on the given information and the

decision analysis method, determine whether Mr. Shyam should accept the publisher's offer or publish the novel himself.

Course Outcome 4 (CO4): Explain the concepts of crashing and dummy activity in project management.

Course Outcome 5 (CO5): Derive the expression for the Economic order quantity (EOQ)?

Course Outcome 6 (CO6): Briefly explain the theories of Entrepreneurial motivation.?

Model Question Paper

QP CODE:

Reg No:_____

PAGES: 4

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR Course Code: HUT 310

Course name: Management for Engineers

Max Marks: 100

Duration: 3 Hours

PART-A (Answer All Questions. Each question carries 3 marks)

- 1. "Management is getting things done through other." Elaborate.
- 2. Comment on the true nature of management. Is it a science or an art?
- 3. Planning is looking ahead and controlling is looking back. Comment with suitable examples
- 4. Explain the process of communication?
- 5. Explain the hierarchy of objectives?
- 6. Explain the types of decisions?
- 7. Describe the Economic man model?
- 8. Explain the concepts of crashing and dummy activity in project management.
- 9. Differentiate the quantitative and qualitative methods in forecasting.

10. What are the key metrics for sustainability measurement? What makes the measurement and reporting of sustainability challenging?

PART-B (Answer any one question from each module)

- 11. a) Explain the systems approach to management. (10)
 - b) Describe the roles of a manager (4)

OR

12. a) Explain the 14 principles of administrative management? (10)

b) Explain the different managerial skills (4)

13. a) What are planning premises, explain the classification of planning premises. (10)

b) Distinguish between strategy and policy. How can policies be made effective. (4)

OR

14 a) Explain three motivational theories. (9)

b) Describe the managerial grid. (5)

15. a) Modern forest management uses controlled fires to reduce fire hazards and to stimulate new forest growth. Management has the option to postpone or plan a burning. In a specific forest tract, if burning is postponed, a general administrative cost of Rs. 300 is incurred. If a controlled burning is planned, there is a 50% chance that good weather will prevail and burning will cost Rs. 3200. The results of the burning may be either successful with probability 0.6 or marginal with probability 0.4. Successful execution will result in an estimated benefit of Rs. 6000, and marginal execution will provide only Rs. 3000 in benefits. If the weather is poor, burning will be cancelled incurring a cost of Rs. 1200 and no benefit. i) Develop a decision tree for the problem. (ii) Analyse the decision tree and determine the optimal course of action. (8)

b) Student tuition at ABC University is \$100 per semester credit hour. The Education department supplements the university revenue by matching student tuition, dollars per dollars. Average class size for typical three credit course is 50 students. Labour costs are \$4000 per class, material costs are \$20 per student, and overhead cost are \$25,000 per class. (a) Determine the total factor productivity. (b) If instructors deliver lecture 14 hours per week and the semester lasts for 16 weeks, what is the labour productivity? (6)

OR

16. a) An ice-cream retailer buys ice cream at a cost of Rs. 13 per cup and sells it for Rs. 20 per cup; any remaining unsold at the end of the day, can be disposed at a salvage price of Rs. 2.5 per cup. Past sales have ranged between 13 and 17 cups per day; there is no reason to believe that

sales volume will take on any other magnitude in future. Find the expected monetary value and EOL, if the sales history has the following probabilities: (9)

Market Size	13	14	15	16	17
Probability	0.10	0.15	0.15	0.25	0.35

b) At Modem Lumber Company, Kishore the president and a producer of an apple crates sold to growers, has been able, with his current equipment, to produce 240 crates per 100 logs. He currently purchases 100 logs per day, and each log required 3 labour hours to process. He believes that he can hire a professional buyer who can buy a better quality log at the same cost. If this is the case, he increases his production to 260 crates per 100 logs. His labour hours will increase by 8 hours per day. What will be the impact on productivity (measured in crates per labour-hour) if the buyer is hired? What is the growth in productivity in this case? (5)

Activity	Time (Days)	Immediate Predecessors
А	1	-
В	4	А
С	3	А
D	7	А
Е	6	В
F	2	C, D
G	7	E, F
Н	9	D
Ι	4	G, H

17. a) A project has the following list of activities and time estimates:

(a) Draw the network. (b) Show the early start and early finish times. (c) Show the critical path. (10)

b) An opinion survey involves designing and printing questionnaires, hiring and training personnel, selecting participants, mailing questionnaires and analysing data. Develop the precedence relationships and construct the project network. (4)

OR

18. a) The following table shows the precedence requirements, normal and crash times, and normal and crash costs for a construction project:

A _4''4	Immediate	Required T	ime (Weeks)	Cost	(Rs.)
Activity	Predecessors	Normal	Crash	Normal	Crash
А	-	4	2	10,000	11,000
В	А	3	2	6,000	9,000
С	А	2	1	4,000	6,000
D	В	5	3	14,000	18,000
E	B, C	1	1	9,000	9,000
F	С	3	2	7,000	8,000
G	E, F	4	2	13,000	25,000
Н	D, E	4	1	11,000	18,000
Ι	H, G	6	5	20,000	29,000

Draw the network. (b) Determine the critical path. (c) Determine the optimal duration and the associated cost. (10)

b) Differentiate between CPM and PERT. (4)

19. a) What is meant by market segmentation and explain the process of market segmentation (8) b) The Honda Co. in India has a division that manufactures two-wheel motorcycles. Its budgeted sales for Model G in 2019 are 80,00,000 units. Honda's target ending inventory is 10,00, 000 units and its beginning inventory is 12, 00, 000 units. The company's budgeted selling price to its distributors and dealers is Rs. 40, 000 per motorcycle. Honda procures all its wheels from an outside supplier. No defective wheels are accepted. Honda's needs for extra wheels for replacement parts are ordered by a separate division of the company. The company's target ending inventory is 3,00,000 wheels and its beginning inventory is 2,00,000 wheels. The budgeted purchase price is Rs. 1,600 per wheel.

- (a) Compute the budgeted revenue in rupees.
- (b) Compute the number of motorcycles to be produced.

Compute the budgeted purchases of wheels in units and in rupees.? (6)

OR

20. a) a) "Human Resource Management policies and principles contribute to effectiveness, continuity and stability of the organization". Discuss. (b) What is a budget? Explain how sales budget and production budgets are prepared? (10)

b) Distinguish between the following: (a) Assets and Liabilities (b) Production concept and Marketing concept (c) Needs and Wants (d) Design functions and Operational control functions in operations (4)

Teaching Plan

Sl.No	TOPIC	SESSION	
	Module I		
1.1	Introduction to management	1	
1.2	Levels of managers and skill required	2	
1.3	Classical management theories	3	
1.4	neo-classical management theories	4	
1.5	modern management theories	5	
1.6	System approaches to Management,	6	
1.7	Task and Responsibilities of a professional Manager	7	
	Module 2		
2.1	Management process – planning	8	
2.2	Mission – objectives – goals – strategy – policies – programmes	0	
2.2	– procedures	9	
2.3	Organizing, principles of organizing, organization structures	10	
2.4	Directing, Leadership	11	
2.5	Motivation, Controlling	12	
	Module III		
3.1	Concept of productivity and its measurement Competitiveness	13	
3.2	Decision making process;	14	
3.3	Models in decision making	15	
3.4	Decision making under certainty and risk	16	
3.5	Decision making under uncertainty	17	
3.6	Decision trees	18	
3.7	Models of decision making.	19	
	Module IV		
4.1	Project Management	20	

Sl.No	TOPIC	SESSION
	Module I	
4.2	Network construction	21
4.3	Arrow diagram, Redundancy	22
4.4	CPM and PERT Networks	23
4.5	Scheduling computations	24
4.6	PERT time estimates	25
4.7	Probability of completion of project	26
4.8	Introduction to crashing	
5.1	Introduction to functional areas of management,	28
5.2	Operations management	29
5.3	Human resources management,	30
5.4	Marketing management	31
5.5	Financial management	32
5.6	Entrepreneurship,	33
5.7	Business plans	34
5.8	Corporate social responsibility, Patents and Intellectual property rights	35

CURRICULUM I TO VIII: B. TECH MECHANICAL ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	нмс	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	10	52
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

1	2	3	4	5	6	7	8	Total
17	21	22	22	23	23	15	17	160
	50				1	50		
			2					2
								162
	1 17	1 2 17 21 50	1 2 3 17 21 22 50 50	1 2 3 4 17 21 22 22 50 2 2	1 2 3 4 5 17 21 22 22 23 50 50 2 2	1 2 3 4 5 6 17 21 22 22 23 23 50 50 2 2 2	123456717212222232315 50 50 2 2 2 2 2	123456781721222223231517 50 50 2

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc **Engineering science courses:** Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, , Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Communication, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc.

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description					
Т	Theory based courses (other the lecture hours, these courses can have tu	torial				
	and practical hours, e.g., L-T-P structure <mark>s 3</mark> -0-0, 3-1-2, 3-0-2 etc.)					
L	Laboratory based courses (where performance is evaluated primarily on the	basis				
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc	.)				
Ν	Non-credit courses					
D	Project based courses (Major, Mini Projects)					
Q	Seminar Courses					

Table	1: Code	for the	courses
-------	---------	---------	---------

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2

SL No	Department	Course Prefix	SL No	Department	Course Prefix
1	Aeronautical Engineering	AO	23	Electronics and Communication Engineering	EC
2	Agriculture Engineering	AG	24	Electronics and Computer Engineering	ER
3	Applied Electronics and Instrumentation	AE	25	Electrical and Computer Engineering	EO
4	Artificial Intelligence	AI	26	Electrical and Electronics Engineering	EE
5	Artificial Intelligence and Data Science	AD	27	Food Technology	FT
6	Artificial Engineering and Machine Learning	AM	28	Humanities	HU
7	Automobile Engineering	AU	29	Industrial Engineering	IE
8	Biomedical Engineering	BM	30	Information Technology	IT
9	Biotechnology	BT	31	Instrumentation & Control	IC
10	Chemical Engineering	СН	32	Mandatory Courses	MC
11	Chemistry	CY	33	Mathematics	MA
12	Civil Engineering	CE	34	Mechanical Engineering	ME
13	Civil and Environmental Engineering	CN	35	Mechatronics	MR
14	Computer Science and Business Systems	СВ	36	Metallurgy	MT
15	Computer Science and Design	CX	37	Mechanical (Auto)	MU
16	Computer Science and Engineering	CS	38	Mechanical (Prod)	MP
17	Computer Science and Engineering (Artificial Intelligence)	CA 2	014 39	Naval & Ship Building	SB
18	Computer Science and Engineering (Artificial Intelligence and Machine Learning)	СМ	40	Physics	РН
19	Computer Science and Engineering (Data Science)	CD	41	Polymer Engineering	РО
20	Computer Science and Engineering (Cyber Security)	CC	42	Production Engineering	PE
21	Cyber Physical Systems	СР	43	Robotics and Automation	RA
22	Electronics & Biomedical	EB	44	Safety & Fire Engineering	FS

Table 2: Departments and their codes

SEMESTER I	
-------------------	--

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	-4	4
	CYT 100-	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER	
----------	--

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL	3-1-0	4	4
B 1/2	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100-	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

- 1. Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.
- Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III	
---------------------	--

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.				
А	MAT201	PARTIAL DIFFERENTIAL EQUATION AND	3-1-0	4	4
		COMPLEX ANALYSIS			
В	MET201	MECHANICS OF SOLIDS	3-1-0	4	4
С	MET203	MECHANICS OF FLUIDS	3-1-0	4	4
	TH		10	A	
D	MET205	METALLURGY & MATERIAL SCIENCE	3-1-0	4	- 4
			\sim		
E	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
1/2					
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	MEL201	COMPUTER AIDED MACHINE DRAWING	0-0-3	3	2
Т	MEL203	MATERIALS TESTING LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4**	4
		TOTAL		26/30	22/26

NOTE:

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

2014

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	MAT202	PROBABILITY, STATISTICS AND	3-1-0	4	4
	AP	NUMERICAL METHODS	AI/	AM	
В	MET202	ENGINEERING THERMODYNAMICS	3-1-0	4	4
С	MET204	MANUFACTURING PROCESS	3-1-0	4	4
D	MET206	FLUID MACHINERY	3-1-0	4	4
E	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
1/2	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	MEL202	FM & HM LAB	0-0-3	3	2
Т	MEL204	MACHINE TOOLS LAB-I	0-0-3	3	2
R/M/ H	VAC	REMEDIAL/MINOR/HONORS COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26

SEMESTER IV

NOTE:

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.		COURSES	L-T-P	HOURS	CREDI T
A	MET301		MECHANICS OF MACHINERY	3-1-0	4	4
В	MET303		THERMAL ENGINEERING	3-1-0	4	4
С	MET305		INDUSTRIAL & SYSTEMS ENGINEERING	3-1-0	4	4
D	MET	Г307	MACHINE TOOLS AND METROLOGY	3-1-0	4	4
E 1/2	HUT	Г300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
	HUT	Г310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCM	N301	DISASTER MANAGEMENT	2-0-0	2	
S	MEI	_331	MACHINE TOOLS LAB-II	0-0-3	3	2
Т	MEI	_333	THERMAL ENGINEERING LAB-I	0-0-3	3	2
R/M/H	V	AC	REMEDIAL/MINOR/HONORS COURSE	3-1-0	4*	4
· · · · · · ·	27/31	23/27				

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MET302	HEAT & MASS TRANSFER	3-1-0	4	4
В	MET304	DYNAMICS AND DESIGN OF MACHINERY	3-1-0	A4V	4
С	MET306	ADVANCED MANUFACTURING ENGINEERING	3-1-0	4	4
D	METXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
1/2	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MET308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	MEL332	COMPUTER AIDED DESIGN & ANALYSIS LAB	0-0-3	3	2
Т	MEL334	THERMAL ENGINEERING LAB-II	0-0-3	3	2
R/M/ H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
	1.11	TOTAL)	25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	MET312	NONDESTRUCTIVE TESTING	2-1-0		
	MET322	COMPUTATIONAL FLUID DYNAMICS	2-1-0		
	MET332	ADVANCED MECHANICS OF SOLIDS	2-1-0	1.1.1	
	MET342	IC ENGINE COMBUSTION AND POLLUTION	2-1-0	3	3
	MET352	AUTOMOBILE ENGINEERING	2-1-0		
	MET362	PRODUCT DESIGN AND DEVELOPMENT	2-1-0		
	MET372	ADVANCED METAL JOINING TECHNIQUES	2-1-0		

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- **All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 2 to 4 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted online by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MET401	DESIGN OF MACHINE ELEMENTS	2-1-0	3	3
В	METXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	METXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	MEL411	MECHANICAL ENGINEERING LAB	0-0-3	3	2
Т	MEQ413	SEMINAR	0-0-3	3	2
U	MED415	AED415 PROJECT PHASE I		6	2
R/M/ H	VAC	REMEDIAL/MINOR/HONORS COURSE	3-1-0	4*	4
		TOTAL	-	24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET413	ADVANCED METHODS IN	2-1-0		
		NONDESTRUCTIVE TESTING			
	MET423	OPTIMIZATION TECHNIQUES AND	2-1-0	3	3
в		APPLICATIONS			
	MET433	FINITE ELEMENT METHOD	2-1-0		
	MET443	AEROSPACE ENGINEERING	2-1-0		
	MET453	HYBRID AND ELECTRIC VEHICLES	2-1-0	196	
	MET463	OPERATIONS MANAGEMENT	2-1-0		
	MET473	AIR CONDITIONING AND	2-1-0		
		REFRIGERATION			

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs The courses listed below are offered by the **Department of MECHANICAL ENGINEERING for students of other undergraduate branches offered in the college under KTU.**

	A DI	ADDULLZ	A T	A & A	
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET415	INTRODUCTION TO BUSINESS ANALYTICS	2-1-0	AL	8
	MET425	QUANTITATIVE TECHNIQUES FOR ENGINEERS	2-1-0	3	3
C	MET435	AUTOMOTIVE TECHNOLOGY	2-1-0		
	MET445	RENEWABLE ENERGY ENGINEERING	2-1-0		
	MET455	QUALITY ENGINEERING AND MANAGEMENT	2-1-0		

NOTE :

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum req	uired to pass 50
Attendance	: 10
Seminar Diary	: 10
Guide	: 20
Report	: 20
Presentation	: 40

- 3. Project Phase I: The course 'Project Work' is mainly intended to evoke the innovation and invention skills in a student. The course will provide an opportunity to synthesize and apply the knowledge and analytical skills learned, to be developed as a prototype or simulation. The project extends to 2 semesters and will be evaluated in the 7th and 8th semester separately, based on the achieved objectives. One third of the project credits shall be completed in 7th semester and two third in 8th semester. It is recommended that the projects may be finalized in the thrust areas of the respective engineering stream or as interdisciplinary projects. Importance should be given to address societal problems and developing indigenous technologies. The assignment to normally include:
 - Literature study/survey of published literature on the assigned topic
 - Formulation of objectives
 - Formulation of hypothesis/ design/ methodology
 - Formulation of work plan and task allocation.
 - Block level design documentation
 - Seeking project funds from various agencies
 - Preliminary Analysis/Modeling/Simulation/Experiment/ Design/Feasibility study

No. 25, 16, 16, 16,

Preparation of Phase 1 report

Total marks: 100, only CIE, minimum required to	pass 50
Guide	: 30
Interim evaluation by the Evaluation committee	: 20
Final evaluation by the Evaluation committee	: 30
Phase – I Report (By Evaluation committee)	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER V	
------------	--

SLOT	CO	URSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	N	/IET402	MECHATRONICS	2-1-0	3	3
В	N	иетххх	PROGRAM ELECTIVE III	2-1-0	3	3
С	N	IETXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	N	IETXXX	PROGRAM ELECTIVE V	2-1-0	3	3
E	Ν	/IET404	COMPREHENSIVE VIVA VOCE	1-0-0	1	1
U	N	1ED416	PROJECT PHASE II	0-0-12	12	4
R/M/ H		VAC	REMEDIAL/MINOR/HONORS COURSE	3-1-0	4*	4
			TOTAL		25/28	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	MET414	QUALITY MANAGEMENT	2-1-0	1	
	MET424	INDUSTRIAL HYDRAULICS	2-1-0		
	MET434	PRESSURE VESSEL AND PIPING DESIGN	3		
В	MET444	DATA ANALYTICS FOR ENGINEERS		3	
	MET454	INDUSTRIAL TRIBOLOGY	2-1-0		
	MET464	MICRO AND NANO MANUFACTURING			
	MET474	HEATING AND VENTILATION SYSTEMS	2-1-0		
PROGRA	M ELECTIVE IV				

PROGRAM ELECTIVE IV

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.		1		
	MET 416	COMPOSITE MATERIALS	2-1-0		
	MET 426	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	2-1-0		2
	MET 436	ACOUSTICS AND NOISE CONTROL	2-1-0	3	3
	MET 446	HEAT TRANSFER EQUIPMENT DESIGN	2-1-0		
C	MET 456	ROBOTICS AND AUTOMATION	2-1-0		
	MET 466	TECHNOLOGY MANAGEMENT	2-1-0		
	MET 476	CRYOGENIC ENGINEERING	2-1-0		

SLOT	COURSE NO.	AR ^{COURSES} KA	L-T-P	HOURS	CREDIT
	MET 418	RELIABILITY ENGINEERING	2-1-0	· 1 1	
	MET 428	PROJECT PLANNING AND MANAGEMENT	2-1-0	A	
	MET438	FRACTURE MECHANICS	2-1-0		200
D	MET 448	GAS TURBINES AND JET PROPULSION	2-1-0		3
	MET 458	ADVANCED ENERGY ENGINEERING	2-1-0		
	MET 468	ADDITIVE MANUFACTURING	2-1-0		
	MET 478	POWER PLANT ENGINEERING	2-1-0		

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the syllabus mentioned for comprehensive course work in the sixth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/ Experiment as needed;
 - Final development of product/process, testing, results, conclusions and future directions;
 - > Preparing a paper for Conference presentation/Publication in Journals, if possible;

 Preparing a Dissertation in the standard format for being evaluated by the Department;

Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by a committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and
project supervisor).: 40Final evaluation by the final evaluation committee: 40(The final evaluation committee comprises Project coordinator, expert from Industry/research
Institute and a senior faculty from a sister department. The same committee will conduct
Comprehensive for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses.**

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered **for B.Tech Minor in MECHANICAL ENGINEERING Branch** can opt to study the courses listed below:

S		BASKET I				BASKET II				BASKET III				
e m e st er	Course No.	Course Name	H O U R S	CREDIT	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H U R S	C R E D I T		
S3	MET281	MECHANICS OF MATERIALS	4	4	MET283	FLUID MECHANICS & MACHINERY	4	4	MET285	MATERIAL SCIENCE & TECHNOLOGY	4	4		
S4	MET282	THEORY OF MACHINES	4	4	MET284	THERMODYNAMICS	4	4	MET286	MANUFACTURIN G TECHNOLOGY	4	4		
S5	MET381	DYNAMICS OF MACHINES	4	4	MET383	THERMA <mark>L</mark> SCIENCE AND ENGINEE <mark>RI</mark> NG	4	4	MET385	MACHINE TOOLS ENGINEERING	4	4		
S6	MET382	MACHINE DESIGN	4	4	MET384	HEAT TRANSFER	4	4	MET386	INDUSTRIAL ENGINEERING	4	4		
S7	MED481	MINIPROJECT	4	4	MED481	MINIPROJECT	4	4	MED481	MINIPROJECT	4	4		
S8	MED482	MINIPROJECT	4	4	MED482	MINIPROJECT	4	4	MED482	MINIPROJECT	4	4		

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all

semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in MECHANICAL ENGINEERING** can opt to study the courses listed below.

SE ME STE R	GROUP I				GROUP II				GROUP III			
	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T
S4	MET292	CONTINUUM MECHANICS	4	4	MET294	ADVANCED MECHANICS OF FLUIDS	4	4	MET296	MATERIALS IN MANUFACTURING	4	4
S5	MET393	EXPERIMENT AL STRESS	4	4	MET395	ADVANCED THERMODYNA	4	4	MET397	FLUID POWER	4	4

		ANALYSIS				MICS				AUTOMATION		
S6	MET394	ADVANCED DESIGN SYNTHESIS	4	4	MET396	COMPRESSIBL E FLUID FLOW	4	4	MET398	ADVANCED NUMERICAL CONTROLLED MACHINING	4	4
S7	MET495	ADVANCED THEORY OF VIBRATIONS	4	4	MET497	COMPUTATIO NAL METHODS IN FLUID FLOW & HEAT TRANSFER	4	4	MET499	PRECISION MACHINING	4	4
S8	MED496	MINIPROJEC T	4	4	MED496	MINIPROJECT	4	4	MED496	MINIPROJECT	4	4
Ļ	1		Л		ΠV	EKS			Y			

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and sensiors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.

CURRICULUM I TO VIII: ELECTRICAL & ELECTRONICS ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	-22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	10	52
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50					50		
Credits Activity	for			×	2	1				2
G.Total										162

ELECTRICAL & ELECTRONICS ENGINEERING

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P struc <mark>tu</mark> res 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Table	1.	Code	for	the	COURSES
Iable	± .	COUE	101	LITE	LUUISES

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Each course is offered by a Department and their two-letter course prefix is given in Table 2

SL No	Department	Course Prefix	SL No	Department	Course Prefix
1	Aeronautical Engineering	AO	23	Electronics and Communication Engineering	EC
2	Agriculture Engineering	AG	24	Electronics and Computer Engineering	ER
3	Applied Electronics and Instrumentation	AE	25	Electrical and Computer Engineering	EO
4	Artificial Intelligence	AI	26	Electrical and Electronics Engineering	EE
5	Artificial Intelligence and Data Science	AD	27	Food Technology	FT
6	Artificial Engineering and Machine Learning	AM	28	Humanities	HU
7	Automobile Engineering	AU	29	Industrial Engineering	IE
8	Biomedical Engineering	BM	30	Information Technology	IT
9	Biotechnology	BT	31	Instrumentation & Control	IC
10	Chemical Engineering	СН	32	Mandatory Courses	MC
11	Chemistry	CY	33	Mathematics	MA
12	Civil Engineering	CE	34	Mechanical Engineering	ME
13	Civil and Environmental Engineering	CN	35	Mechatronics	MR
14	Computer Science and Business Systems	СВ	36	Metallurgy	MT
15	Computer Science and Design	CX	37	Mechanical (Auto)	MU
16	Computer Science and Engineering	CS	38	Mechanical (Prod)	MP
17	Computer Science and Engineering (Artificial Intelligence)	CA ²	014 39	Naval & Ship Building	SB
18	Computer Science and Engineering (Artificial Intelligence and Machine Learning)	СМ	40	Physics	PH
19	Computer Science and Engineering (Data Science)	CD	41	Polymer Engineering	РО
20	Computer Science and Engineering (Cyber Security)	CC	42	Production Engineering	PE
21	Cyber Physical Systems	СР	43	Robotics and Automation	RA
22	Electronics & Biomedical	EB	44	Safety & Fire Engineering	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICSA	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

2014

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL Estd.		28/29	21

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches

in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3-1-0	4	4
	4 535	A DESTRICT	7 A	1.1	
В	EET201	CIRCUITS AND NETWORKS	2-2-0	4	4
С	EET203	MEASUREMENTS AND	3-1-0	4	4
D	EET205	ANALOG ELECTRONICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	EEL201	CIRCUITS AND MEASUREMENTS LAB	0-0-3	3	2
Т	EEL203	ANALOG ELECTRONICS LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	7	26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	MAT 204	PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS	3-1-0	4	4
В	EET202	DC MACHINES AND TRANSFORMERS	2-2-0	4	4
С	EET204	ELECTROMAGNETIC THEORY	3-1-0	4	4
D	EET206	DIGITAL ELECTRONICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	EEL202	ELECTRICAL MACHINES LAB I	0-0-3	3	2
Т	EEL204	DIGITAL ELECTRONICS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR <mark>/</mark> HONOURS COURSE	3-1-0	4*	4
		TOTAL		26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesnot opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET301	POWER SYSTEMS I	3-1-0	4	4
В	EET303	MICROPROCESSORS AND MICROCONTROLLERS	3-1-0	4	4
С	EET305	SIGNALS AND SYSTEMS	3-1-0	4	4
D	EET307	SYNCHRONOUS AND INDUCTION MACHINES	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	EEL331	MICROPROCESSORS AND MICROCONTROLLERS LAB	0-0-3	3	2
Т	EEL333	ELECTRICAL MACHINES LAB II	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR <mark>/</mark> HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET302	LINEAR CONTROL SYSTEMS	2-2-0	4	4
В	EET304	POWER SYSTEMS II	3-1-0	4	4
С	EET306	POWER ELECTRONICS	3-1-0	4	4
D	EETXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	EET308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	EEL332	POWER SYSTEMS LAB	0-0-3	3	2
Т	EEL334	POWER ELECTRONICS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		28/32	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET312	BIOMEDICAL INSTRUMENTATION	2-1-0	/	
	EET322	RENEWABLE ENERGY SYSTEMS	2-1-0		
D	EET332	COMPUTER ORGANIZATION	2-1-0	3	3
	EET342	HIGH VOLTAGE ENGINEERING	2-1-0		
	EET352	OBJECT ORIENTED PROGRAMMING	2-1-0		
	EET362	MATERIAL SCIENCE	2-1-0]	
	EET372	SOFT COMPUTING	2-1-0]	

NOTE:

1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET401	ADVANCED CONTROL SYSTEMS	2-1-0	3	3
В	EETXXX	PROGRAM ELECTIVE II	2-1-0	3	3
C	EETXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	EEL411	CONTROL SYSTEMS LAB	0-0-3	3	2
Т	EEQ413	SEMINAR	0-0-3	3	2
U	EED415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET413	ELECTRIC DRIVES	2-1-0		
	EET423	DIGITAL CONTROL SYSTEMS	2-1-0]	
В	EET433	MODERN OPERATING SYSTEMS	3	3	
	EET443	DATA STRUCTURES			
	EET453	DIGITAL SIGNAL PROCESSING	2-1-0		
	EET463	ILLUMINATION TECHNOLOGY	2-1-0		
	EET473	DIGITAL PROTECTION OF POWER	2-1-0		
		SYSTEMS			

2014

OPEN ELECTIVES

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. For example the courses listed below are offered by the Department of ELECTRICAL & ELECTRONICS ENGINEERING for students of other undergraduate branches offered in the college under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	EET415	CONTROL SYSTEMS ENGINEERING	2-1-0		
С	EET425	INTRODUCTION TO POWER PROCESSING	2-1-0	3	3
EET435	EET435	RENEWABLE ENERGY SYSTEMS	2-1-0		
	EET445	ELECTRIC VEHICLES	2-1-0		
	EET455	ENERGY MANAGEMENT	2-1-0		

NOTE :

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum requ	uired to pass 50
Attendance	: 10
Seminar Diary	: 10
Guide	: 20
Report	: 20
Presentation	: 40

- 3. Project Phase I: The course 'Project Work' is mainly intended to evoke the innovation and invention skills in a student. The course will provide an opportunity to synthesize and apply the knowledge and analytical skills learned, to be developed as a prototype or simulation. The project extends to 2 semesters and will be evaluated in the 7th and 8th semester separately, based on the achieved objectives. One third of the project credits shall be completed in 7th semester and two third in 8th semester. It is recommended that the projects may be finalized in the thrust areas of the respective engineering stream or as interdisciplinary projects. Importance should be given to address societal problems and developing indigenous technologies. The assignment to normally include:
 - Literature study/survey of published literature on the assigned topic
 - Formulation of objectives
 - Formulation of hypothesis/ design/ methodology
 - Formulation of work plan and task allocation.
 - Block level design documentation
 - Seeking project funds from various agencies
 - Preliminary Analysis/Modeling/Simulation/Experiment/ Design/Feasibility study

No. Physics and a

Preparation of Phase 1 report

Total marks: 100, only CIE, minimum required to	pass 50
Guide	: 30
Interim evaluation by the Evaluation committee	: 20
Final evaluation by the Evaluation committee	: 30
Phase – I Report (By Evaluation committee)	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
A	EET402	ELECTRICAL SYSTEM DESIGN AND ESTIMATION	2-1-0	3	3
В	EETXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	EETXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	EETXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	EET404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	EED416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

				1
14 R	OBOTICS	2-1-0		
24 E	NERGY MANAGEMENT	2-1-0		
34 SI	MART GRID TECHNOLOGIES	2-1-0	3	3
44 E	LECTRICAL MACHINE DESIGN	2-1-0		
54 S ^v	WITCHED MODE POWER CONVERTERS	2-1-0		
64 C	COMPUTER AIDED POWER SYSTEM	2-1-0		
A	ANALYSIS			
74 N	MACHINE LEARNING	2-1-0		
	14 E 54 S 54 C 74 N	I4 ELECTRICAL MACHINE DESIGN 54 SWITCHED MODE POWER CONVERTERS 54 COMPUTER AIDED POWER SYSTEM ANALYSIS 74 MACHINE LEARNING	14 ELECTRICAL MACHINE DESIGN 2-1-0 54 SWITCHED MODE POWER CONVERTERS 2-1-0 54 COMPUTER AIDED POWER SYSTEM ANALYSIS 2-1-0 74 MACHINE LEARNING 2-1-0	14 ELECTRICAL MACHINE DESIGN 2-1-0 54 SWITCHED MODE POWER CONVERTERS 2-1-0 54 COMPUTER AIDED POWER SYSTEM 2-1-0 54 MACHINE LEARNING 2-1-0

PROGRAM ELECTIVE IV

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET416	NONLINEAR SYSTEMS	2-1-0		
	EET426	SPECIAL ELECTRIC MACHINES	2-1-0		
С	EET436	POWER QUALITY	2-1-0	3	3
	EET446	COMPUTER NETWORKS	2-1-0		
	EET456	DESIGN OF POWER ELECTRONIC	2-1-0		
		SYSTEMS			
	EET466	HVDC & FACTS	2-1-0]	
	EET476	ADVANCED ELECTRONIC DESIGN	2-1-0		

SLOT	COURSE NO	COURSES	L-T-P	HOURS	CREDIT
	EET418	ELECTRIC AND HYBRID VEHICLES	2-1-0		
	EET428	INTERNET OF THINGS	2-1-0		
D	EET438	ENERGY STORAGE SYSTEMS	2-1-0	3	3
	EET448	ROBUST AND ADAPTIVE CONTROL	2-1-0	INA.	
	EET458	SOLAR PV SYSTEMS	2-1-0	1. T. I.	
	EET468	INDUSTRIAL INSTRUMENTATION	2-1-0	0.1	
	LLA	&AUTOMATION	mak		
	EET478	BIG DATA ANALYTICS	2-1-0		
	the second se	JINIVERSI	1	_	

PROGRAM ELECTIVE V

NOTE

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;

- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;

Final Presentation before a Committee
 Total marks: 150, only CIE, minimum required to pass 75
 Guide : 30
 Interim evaluation, 2 times in the semester by a committee : 50
 Quality of the report evaluated by the above committee : 30
 (The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).
 Final evaluation by the final evaluation committee : 40
 (The final evaluation committee comprises Project coordinator, expert from Industry/ research Institute and a senior faculty from a sister department. The same committee

will conduct Comprehensive for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B. Tech Minor in ELECTRICAL & ELECTRONICS ENGINEERING can opt to study the courses listed below:

S e m e st er		BASKET I			1	BASKET II			/	BASKET III					
	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T	Course No.	Course Name	H O U R S	C R E D I T			
S3	EET281	ELECTRIC CIRCUITS	4	4	EET 283	INTRODUCTION TO POWER ENGINEERING	4	4	EET 285	DYNAMIC CIRCUITS AND SYSTEMS	4	4			
S4	EET 282	ELECTRICAL MACHINES	4	4	EET 284	ENERGY SYSTEMS	4	4	EET 286	PRINCIPLES OF INSTRUMENTATI ON	4	4			
S5	EET 381	SOLID STATE POWER CONVERSION	4	4	EET 383	SOLAR AND WINDENERGY CONVERSION SYSTEMS	4	4	EET 385	CONTROL SYSTEMS	4	4			
S6	EET 382	POWER SEMICONDUCTOR DRIVES	4	4	EET 384	INSTRUMENTATION AND AUTOMATION OF POWER PLANTS	4	4	EET 386	DIGITAL CONT ROL	4	4			
S7	EED 481	MINIPROJECT	4	4	EED 481	MINIPROJECT	4	4	EED 481	MINIPROJECT	4	4			

ELECTRICAL & ELECTRONICS ENGINEERING

S8	EED 482	MINIPROJECT	4	4	EED 482	MINIPROJECT	4	4	EED 482	MINIPROJECT	4	4	
											ا ا		

Notes on Minor from Electrical Engineering Department:

Students have to credit additional 5 courses (20 credits) to receive minor in Electrical and Electronics Engineering. While choosing the minor basket, at least two courses in the selected basket should have contents different from the courses in the curriculum of the parent branch. (This is necessary in the case of related branches like Electronics and Communication, Electronics and Instrumentation, Applied Electronics and Instrumentation, Electronics and Biomedical, Computer Science and Engineering etc.) In case where the student chooses a basket with only two courses different from their parent curriculum, the remaining courses have to be selected from the approved MOOC courses. This restriction may be incorporated in the regulations/curriculum.

HONOURS

Honours is an additional credential a student may earn if she/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).

- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for B.Tech Honours in ELECTRICAL & ELECTRONICS ENGINEERING can opt to study the courses listed below:

GROUP I						GROUP II				GROUP III			
S e m es te r	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	C R E D I T	Course No	Course Name	H O U R S	C R D I T	
S4	EET292	NETWORK ANALYSIS AND SYNTHESIS	4	4	EET 292	NETWORK ANALYSIS AND SYNTHESIS	4	4	EET 292	NETWORK ANALYSIS AND SYNTHESIS	4	4	
S5	EET393	DIGITAL SIMULATION	4	4	EET 393	DIGITAL SIMULATION	4	4	EET 393	DIGITAL SIMULATION	4	4	
S6	EET394	GENERALISED MACHINE THEORY	4	4	EET 396	ANALYSIS OF POWER ELECTRONIC CIRCUITS	4	4	EET 398	OPERATION AND CONTROL OF POWER SYSTEMS	4	4	
S7	EET495	OPERATION AND CONTROL OF GENERATORS	4	4	EET 497	DYNAMICS OF POWER CONVERTERS	4	4	EET 499	CONTROL AND DYNAMICS OF MICROGRIDS	4	4	
S8	EED496	MINIPROJECT	4	4	EED 496	MINIPROJECT	4		EED 496	MINIPROJECT	4	4	

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B.Tech ELECTRONICS & COMMUNICATION ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI.	Category	Code	Credits
No	A DI A DINI IL IZAT	A 4	
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	16	52
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.

Semester	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity	1	50		201			50		
Points				-			£12		
Credits for				2					2
Activity			100		19				
Grand.Total				4					162

Semester-wise credit distribution shall be as below:

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like E C L 2 0 1. The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
Т	Theory based courses (other the lecture hours, these courses can have tutorial
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2

SL No	Department	Course Prefix	SL No	Department	Course Prefix
1	Aeronautical Engineering	AO	23	Electronics and Communication Engineering	EC
2	Agriculture Engineering	AG	24	Electronics and Computer Engineering	ER
3	Applied Electronics and Instrumentation	AE	25	Electrical and Computer Engineering	EO
4	Artificial Intelligence	AI	26	Electrical and Electronics Engineering	EE
5	Artificial Intelligence and Data Science	AD	27	Food Technology	FT
6	Artificial Engineering and Machine Learning	AM	28	Humanities	HU
7	Automobile Engineering	AU	29	Industrial Engineering	IE
8	Biomedical Engineering	BM	30	Information Technology	IT
9	Biotechnology	BT	31	Instrumentation & Control	IC
10	Chemical Engineering	СН	32	Mandatory Courses	MC
11	Chemistry	CY	33	Mathematics	MA
12	Civil Engineering	CE	34	Mechanical Engineering	ME
13	Civil and Environmental Engineering	CN	35	Mechatronics	MR
14	Computer Science and Business Systems	СВ Е	36	Metallurgy	MT
15	Computer Science and Design	CX	37	Mechanical (Auto)	MU
16	Computer Science and Engineering	CS	38	Mechanical (Prod)	MP
17	Computer Science and Engineering (Artificial Intelligence)	CA ²	014 39	Naval & Ship Building	SB
18	Computer Science and Engineering (Artificial Intelligence and Machine Learning)	СМ	40	Physics	PH
19	Computer Science and Engineering (Data Science)	CD	41	Polymer Engineering	РО
20	Computer Science and Engineering (Cyber Security)	CC	42	Production Engineering	PE
21	Cyber Physical Systems	СР	43	Robotics and Automation	RA
22	Electronics & Biomedical	EB	44	Safety & Fire Engineering	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT		
Α	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4		
	ADT	A DEST IL IZ	A-T-1	1 1 1			
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4		
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4		
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3		
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3		
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4		
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4		
E	HUN 101	LIFE SKILLS	2-0-2	4			
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1		
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1		
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1		
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1		
	TOTAL 23/24 * 17						
		ESIU, SU					

*Minimum hours per week

Note:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course 2014

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS, DIFFERENTIAL	3-1-0	4	4
	A DT	EQUATIONS AND TRANSFORMS	TA	4.4	
B 1/2	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for
Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT201	PARTIAL DIFFERENTIAL	3-1-0	4	4
		EQUATION AND COMPLEX			
	AD	ANALYSIS	11/	A-T-	AL
В	ECT 201	SOLID STATE DEVICES	3-1-0	4	4
С	ECT 203	LOGIC CIRCUIT DESIGN	3-1-0	4	4
D	ECT 205	NETWORK THEORY	3-1-0	4	4
E 1/2	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	ECL 201	SCIENTIFIC COMPUTING LAB	0-0-3	3	2
Т	ECL 203	LOGIC DESIGN LAB	0-0-3	3	2
R/M	VAC	Remedial/Minor course	3-1-0	4**	4
		TOTAL		26/30	22/26

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 204	PROBABILITY, RANDOM PROCESS AND NUMERICAL METHODS	3-1-0	4	4
В	ECT 202	ANALOG CIRCUITS	3-1-0	A ⁴	AN
С	ECT 204	SIGNALS AND SYSTEMS	3-1-0	4	4
D	ECT 206	COMPUTER ARCHITECTURE AND MICROCONTROLLERS	3-1-0	4	4
E 1/2	EST200	DESIGN AND ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	ECL 202	ANALOG CIRCUITS AND SIMULATION LAB	0-0-3	3	2
Т	ECL 204	MICROCONTROLLER LAB	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4**	4
		TOTAL		26/30	22/26

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ECT 301	LINEAR INTEGRATED CIRCUITS	3-1-0	4	4
В	ECT 303	DIGITAL SIGNAL PROCESSING	3-1-0	4	4
С	ECT 305	ANALOG AND DIGITAL COMMUNICATION	3-1-0	4	AL
D	ECT 307	CONTROL SYSTEMS	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS AND FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	ECL 331	ANALOG INTEGRATED CIRCUITS AND SIMULATION LAB	0-0-3	3	2
Т	ECL 333	DIGITAL SIGNAL PROCESSING LAB	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4**	4
		TOTAL		27/31	23/27

- 1. Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ECT 302	ELECTROMAGNETICS	3-1-0	4	4
В	ECT 304	VLSI CIRCUIT DESIGN	3-1-0	4	4
С	ECT 306	INFORMATION THEORY AND CODING	3-1-0	4	A 4
D	ECTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E	HUT300	INDUSTRIAL ECONOMICS AND	3-0-0	3	3
1/2		FOREIGN TRADE			
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	ECT 308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	ECL 332	COMMUNICATION LAB	0-0-3	3	2
Т	ECD 334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4**	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE	COURSES	L-T-P	HOURS	CREDIT
	NO.	Estd			
	ECT 312	Digital System Design	2-1-0		
	ECT 322	Power Electronics	2-1-0	2	2
D	ECT 332	Data Analysis	2-1-0	5	J
U	ECT 342	Embedded Systems	2-1-0		
	ECT 352	Digital Image Processing	2-1-0		
	ECT 362	Introduction to MEMS	2-1-0		
	ECT 372	Quantum Computing	2-1-0		

NOTE:

 Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.

- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.
- 4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks Split up for CIE Estd : 10 Attendance :15 Guide Project Report :10 Evaluation by the Committee (will be evaluating the level of completion and of functionality/specifications, presentation, oral examination, work knowledge and involvement)

demonstration

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	ECT 401	MICROWAVES AND ANTENNAS	2-1-0	3	3
В	ECTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	ECTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	ECL 411	ELECTROMAGNETICS LAB	0-0-3	3	2
Т	ECQ 413	SEMINAR	0-0-3	3	2
U	ECD 415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	Remedial/Minor/Honors course	3-1-0	4*	4
·		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT 413	Optical Fiber Communication	2-1-0		
	ECT 423	Computer Networks	2-1-0		
	ECT 433	Opto-electronic Devices	2-1-0	3	3
В	ECT 443	Instrumentation	2-1-0		
	ECT 453	Error Control Codes	2-1-0		
	ECT 463	Machine Learning	2-1-0		
	ECT 473	DSP Architectures	2-1-0		
		2014			

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of ELECTRONICS AND COMMUNICATION ENGINEERING for students of other undergraduate branches offered in the college under KTU. KALAM

ADI ARTIT

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT 415	Mechatronics	2-1-0	-11	43
	ECT 425	Biomedical Instrumentation	2-1-0		
	ECT 435	Electronic Hardware for Engineers	2-1-0	3	3
С	ECT 445	IoT and Applications	2-1-0		
	ECT 455	Entertainment Electronics	2-1-0		

NOTE :

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50						
Attendance	: 10					
Seminar Diary	: 10					
Guide	: 20					
Report	: 20					
Presentation	: 40					

- 3. Project Phase I: The course 'Project Work' is mainly intended to evoke the innovation and invention skills in a student. The course will provide an opportunity to synthesize and apply the knowledge and analytical skills learned, to be developed as a prototype or simulation. The project extends to 2 semesters and will be evaluated in the 7th and 8th semester separately, based on the achieved objectives. One third of the project credits shall be completed in 7th semester and two third in 8th semester. It is recommended that the projects may be finalized in the thrust areas of the respective engineering stream or as interdisciplinary projects. Importance should be given to address societal problems and developing indigenous technologies. The assignment to normally include:
 - Literature study/survey of published literature on the assigned topic
 - Formulation of objectives
 - Formulation of hypothesis/ design/ methodology
 - Formulation of work plan and task allocation.
 - Block level design documentation
 - Seeking project funds from various agencies
 - Preliminary Analysis/Modeling/Simulation/Experiment/ Design/Feasibility study

10. Carlos 10. Carlos

Preparation of Phase 1 report

Total marks: 100, only CIE, minimum required to	pass 50
Guide	: 30
Interim evaluation by the Evaluation committee	: 20
Final evaluation by the Evaluation committee	: 30
Phase – I Report (By Evaluation committee)	: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES		L-T-P	HOURS	CREDIT
A	ECT 402	WIRELESS COMMUNICA	ATION	2-1-0	3	3
В	ECTXXX	PROGRAM ELECTIVE III	Л	2-1-0	3	3
С	ECTXXX	PROGRAM ELECTIVE IV	110	2-1-0	3	3
D	ECTXXX	PROGRAM ELECTIVE V	D	2-1-0	3	3
E	ECT 404	COMPREHENSIVE VIVA VC	DCE	1-0-0	1	1
U	ECD 416	PROJECT PHASE II		0-0- 12	12	4
R/M/H	VAC	Remedial/Minor/Honor course	ſS	3-1-0	4*	4
		TOTAL			25/28	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT 414	Biomedical Engineering	2-1-0		
	ECT 424	Satellite Communication	2-1-0		
	ECT 434	Secure Communication	2-1-0]	
	ECT 444	Pattern Recognition	2-1-0	3	3
В	ECT 454	RF Circuit Design	2-1-0		
	ECT 464	Mixed Signal Circuit Design	2-1-0		
	ECT 474	Entrepreneurship	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
		2014			
	ECT 416	Modern Communication Systems	2-1-0		
	ECT 426	Real Time Operating Systems	2-1-0		
	ECT 436	Adaptive Signal Processing	2-1-0	3	3
	ECT 446	Microwave Devices and Circuits	2-1-0		
С	ECT 456	Speech and Audio Processing	2-1-0		
	ECT 466	Analog CMOS Design	2-1-0		
	ECT 476	Robotics	2-1-0		

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT 418	Mechatronics	2-1-0		
	ECT 428	Optimization Techniques	2-1-0		
	ECT 438	Computer Vision	2-1-0	A & A	
D	ECT 448	Low Power VLSI	2-1-0	3	3
	ECT 458	Internet of Things	2-1-0	1. 1	
	ECT 468	Renewable Energy Systems	2-1-0	A	
	ECT 478	Organic Electronics	2-1-0	a har	8
NOTE:		INIVERSE	ΓY		

PROGRAM ELECTIVE V

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. Project Phase II: The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:
 - In depth study of the topic assigned in the light of the Report prepared under Phasel;
 - Review and finalization of the Approach to the Problem relating to the assigned topic;
 - > Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed:
 - > Final development of product/process, testing, results, conclusions and future directions:
 - Preparing a paper for Conference presentation/Publication in Journals, if possible;
 - > Preparing a Dissertation in the standard format for being evaluated by the Department;
 - Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75Guide: 30Interim evaluation, 2 times in the semester by a committee: 50Quality of the report evaluated by the above committee: 30(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and
project supervisor).Final evaluation by the final evaluation committeeFinal evaluation by the final evaluation committee: 40(The final evaluation committee comprises Project coordinator, expert from Industry/research
Institute and a senior faculty from a sister department. The same committee will conduct

MINOR

Comprehensive for 50 marks).

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv)There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

ELECTRONICS & COMMUNICATION ENGINEERING

(vi)The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in **ELECTRONICS AND COMMUNICATION** can opt to study the courses listed below:

N 8 1

TTA TZ

				-	-								
SE		BASKETT	-	1		1.1	BASKET II			Sec. 1	BASKET III		
ME	COURS	COURSE	Π.	С	Н	COURS	COURSE NAME	H	С	COURS	COURSE NAME	H	C
STE	E NO.	NAME	0	R	0	E NO.	A F K NI	0	R	E NO.		0	R
R			U	E	U	3.8. 3	the the second of	U	E	A		U	E
			R		R			R				R	
			c		c			c				c	
			3	<u>-</u>	3			3				3	_
								<u> </u>	•				-
53	ECT281	ELECTRONIC					ANALOG				INTRODUCTION TO		
		CIRCUITS	4	4		ECT283	COMMUNICATI	4	4	ECT285	SIGNALS AND	4	4
							ON				SYSTEMS		
S4	ECT282	MICROCONT					DIGITAL			ECT286	INTRODUCTION TO		
		ROLLERS	4	4		ECT284	COMMUNICATI	4	4		DIGITAL SIGNAL	4	4
							ON				PROCESSING		
	ECT381	EMBEDDED				ECT383	COMMUNICATI			ECT385	TOPICS IN DIGITAL		
55		SYSTEM	4	4			ON SYSTEMS	4	4		IMAGE	4	4
		DESIGN					CITOTOTENIS	·	•		PROCESSING	'	
56	ECT282	VISI				ECT28/				ECT286			
30	ECISOZ					LCT304				LCISOU			
		CIRCUITS	4	4			NETWORKS	4	4		COMPUTER VISION	4	4
S7	ECD481	MINIPROJECT				ECD481	MINIPROJECT			ECD481	MINIPROJECT		
			4	4				4	4			4	4
S8	ECD482	MINIPROJECT				ECD482	MINIPROJECT			ECD482	MINIPROJECT		
			4	4		1	ESIC.	4	4			4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for Honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for B.Tech Honours in ELECTRONICS AND COMMUNICATION ENGINEERING can opt to study the courses listed below:

ELECTRONICS & COMMUNICATION ENGINEERING

		GROUP I				GROUP II				GROUP III		
SE	COURS	COURSE NAME	Н	С	COURSE	COURSE NAME	Η	С	COURSE	COURSE	Η	С
ME	E NO.		ο	R	NO.		0	R	NO.	NAME	0	R
STE			U	Ε			υ	Ε			U	Ε
R			R	D			R	D			R	D
			S	L			S	I.			S	I
		A 13.1		Т	IN ED	1.11.12.0		Т	AAA			Т
S4	ECT292	NANOELECTRO	4	4	ECT294	STOCHASTIC	4	4	ECT296	STOCHASTIC	4	4
		NICS				PROCESSES FOR	-	1	1 3.4 Y.	SIGNAL		
					$I \land I$	COMMUNICATION		C	A	PROCESSING		
S5	ECT393	FPGA BASED	4	4	ECT395	DETECTION AND	4	4	ECT397	COMPUTATI	4	4
		SYSTEM DESIGN	T	K	TTV.	ESTIMATION		0	1	ONAL TOOLS		
					$N \perp V$	THEORY		T		FOR SIGNAL		
					and the second second			2		PROCESSING		
S6	ECT394	ELECTRONIC	4	4	ECT396	MIMO AND	4	4	ECT398	DETECTION	4	4
		DESIGN				MULTIUSER				AND		
		AUTOMATION				COMMUNICATION				ESTIMATION		
						SYSTEMS				THEORY		
S7	ECT495	RF MEMS	4	4	ECT497	DESIGN AND	4	4	ECT499	MULTIRATE	4	4
						ANALYSIS OF				SIGNAL		
						ANTENNAS				PROCESSING		
					710-					AND		
										WAVELETS		
S8	ECD496	MINIPROJECT	4	4	ECD496	MINIPROJECT	4	4	ECD496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique threeweek immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.

• **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

B. TECH IN COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

CURRICULUM FROM SEMESTERS I TO VIII

Every course of B. Tech. Programme shall be placed in one of the nine categories as listed in table below.

Sl. No	APJ AB Category L KALA	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	5
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	79
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits		162
10	Value Added Course (Optional)	VAC	20

No semester shall have more than five lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points	502014 50								
Credits for Activity	2						2		
G.Total									162

Basic Science Courses: Mathematics, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering Science Courses: Engineering Graphics, Programming in C, Basics of Electrical and Electronics Engineering, Basics of Civil and Mechanical Engineering,

Engineering Mechanics, Thermodynamics, Design Engineering, Materials Engineering, Workshops etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory Non-credit Courses: Environmental Science, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, Disaster Management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **CSL 201.** The first two letter code refers to the department offering the course. CS stands for course in Computer Science & Engineering or Computer Science Allied, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
Т	Theory based courses (other than lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
Ν	Non-credit courses
D	Project based courses (Major-, Mini- Projects)
Q	Seminar courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (non-zero even number) or in both the semesters (zero). The middle number could be any digit. CSL 201 is a laboratory course offered in Computer Science and Engineering or allied department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a theory course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments in the second semester. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2.

SL No	Department	Course Prefix	SL No	Department	Course Prefix
1	Aeronautical Engineering	AO	23	Electronics and Communication Engineering	EC
2	Agriculture Engineering	AG	24	Electronics and Computer Engineering	ER
3	Applied Electronics and Instrumentation	AE	25	Electrical and Computer Engineering	EO
4	Artificial Intelligence	AI	26	Electrical and Electronics Engineering	EE
5	Artificial Intelligence and Data Science	AD	27	Food Technology	FT
6	Artificial Engineering and Machine Learning	AM	28	Humanities	HU
7	Automobile Engineering	AU	29	Industrial Engineering	IE
8	Biomedical Engineering	BM	30	Information Technology	IT
9	Biotechnology	BT	31	Instrumentation & Control	IC
10	Chemical Engineering	CH	32	Mandatory Courses	MC
11	Chemistry	CY	33	Mathematics	MA
12	Civil Engineering	CE	34	Mechanical Engineering	ME
13	Civil and Environmental Engineering	CN	35	Mechatronics	MR
14	Computer Science and Business Systems	CB	36	Metallurgy	MT
15	Computer Science and Design	CX	37	Mechanical (Auto)	MU
16	Computer Science and Engineering	CS	38	Mechanical (Prod)	MP
17	Computer Science and Engineering (Artificial Intelligence)	CA	39	Naval & Ship Building	SB
18	Computer Science and Engineering (Artificial Intelligence and Machine Learning)	CM	40	Physics	РН
19	Computer Science and Engineering (Data Science)	CD	41	Polymer Engineering	РО
20	Computer Science and Engineering (Cyber Security)	CC	42	Production Engineering	PE
21	Cyber Physical Systems	СР	43	Robotics and Automation	RA
22	Electronics & Biomedical	EB	44	Safety & Fire Engineering	FS

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
В	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
1/2	CYT 100	ENGINEERING CHEMISTRY	3-1-0	$A_{4}V$	4
С	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
1/2	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D	EST 120	BASICS OF CIVIL & MECHANICALENGINEERING	4-0-0	4	4
1/2	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	
S	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
1/2	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
Т	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
1/2	ESL 130	ELECTRICAL & CONTROL ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24	17

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 102	VECTOR CALCULUS , DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
В	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
1/2	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
С	EST 100	ENGINEERING MECHANICS	2-1-0	-3	3
1/2	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D	EST 120	BASICS OF CIVIL & MEC HANICAL ENGINEERING	4-0-0	4	4
1/2	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Ε	HUT 102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
1/2	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
Т	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
1/2	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

 Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in S1 and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester

- 2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in S1 and Engineering Graphics in S2 & viceversa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, CSE(Data Science), CSE (AI), CSE(AI & ML), AI & Data Science, AI, AI & ML, IT, RA can choose this course inS1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METALLURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Workshop in the same semester.

4. LIFESKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 203	DISCRETE MATHEMATICAL STRUCTURES	3-1-0	4	4
В	CST 201	DATA STRUCTURES	3-1-0	4	4
С	CST 203	LOGIC SYSTEM DESIGN	3-1-0	A 4	4
D	CST 205	OBJECT ORIENTED PROGRAMMING USING JAVA	3-1-0	Â	4
Е	EST 200	DESIGN & ENGINEERING	2-0-0	2	2
(1/2)	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN 201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	CSL 201	DATA STRUCTU <mark>R</mark> ES LAB	0-0-3	3	2
Т	CSL 203	OBJECT ORIENTED PROGRAMMING LAB (IN JAVA)	0-0-3	3	2
R/M	VAC	Remedial/Minor course	3-1-0	4	4
		TOTAL		26*	22/26
* Exclu	iding Hours to	o be engaged for Remedial/Minor co	ourse.		

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT 256	PROBABILITY AND STATISTICAL MODELING	3-1-0	4	4
В	CST 202	COMPUTER ORGANISATION AND ARCHITECTURE	3-1-0	4	4
С	CST 204	DATABASE MANAGEMENT SYSTEMS	3-1-0	ÂŁ	4
D	CST 206	OPERATING SYSTEMS	3-1-0	4	4
Е	EST 200	DESIGN & ENGINEERING	2-0-0	2	2
(1/2)	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN 202	CONSTITUTION OF INDIA	2-0-0	2	
S	ADL 202	PYTHON AND STATISTICAL MODELING LAB	0-0-3	3	2
Т	CSL204	OPERATING SY <mark>ST</mark> EMS LAB	0-0-3	3	2
R/M/ H	VAC	Remedial/Minor/Honours course	3-1-0	4	4
		TOTAL		26*	22/26
* Exclu	ding Hours to	be engaged for Remedial/Minor/Hone	ours cour	se.	

NOTE:

 Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & viceversa.

Fetd

2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT	
A	CST 301	FORMAL LANGUAGES AND AUTOMATA THEORY	3-1-0	4	4	
в	CST 303	COMPUTER NETWORKS	3-1-0	A ₄ V	4	
С	CDT 305	DATA ANALYTICS	3-1-0	4	4	
D	CDT 307	BIG DATA PROCESSING	3-1-0	4	4	
Е	CST 309	MANAGEMENT O F SOFTWARE SYSTEMS	3-0-0	3	3	
F	MCN 301	DISASTER MANAGEMENT	2-0-0	2		
S	CDL 331	DATA ANALYTICS LAB	0-0-3	3	2	
Т	CSL 333	DATABASE MANAGEMENT SYSTEMS LAB	0-0-3	3	2	
R/M/ H	VAC	Remedial/Minor/Honourscourse*	2-0-0	4	4	
		TOTAL		29*	23/27	
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honours course.					

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/ Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

Estd.

SEMESTER VI

SLOT	COURS E NO.	COURSES	L-T-P	HOURS	CREDIT
А	CST 302	COMPILER DESIGN	3-1-0	4	4
В	CDT 304	MACHINE LEARNING CONCEPTS	3-1-0	A	4
С	CST 306	ALGORITHM ANA LYSIS AND DESIGN	3-1-0	Ç4	4
D	CDT	PROGRAM ELECTIVE I	2-1-0	I 3	3
Е	HUT 300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
F	CDT 308	COMPREHENSIVE COURSE WORK	1-0-0	1	1
S	CDL 332	BIG DATA PROCESSING LAB	0-0-3	3	2
Т	CDD 324	MINIPROJECT	0-0-3	3	2
R/M/ H	VAC	Remedial/Minor/Honour scourse*	3-1-0	4	4
		TOTAL		25*	23/27
* Excluding Hours to be engaged for Remedial/Minor/Honours course					

Note:

Electives: This curriculum envisages to offer a learner an opportunity to earn proficiency in one of the three trending areas in Computer Science/Data Science, namely Security in Computing, Computer Programming and Formal Methods in Software Engineering. Three courses each from the above areas are included through Elective Courses in different Elective Buckets. For example, a learner who is interested in the *Computer Security* area may opt to take the elective courses - *Foundations in Security in Computing* from Elective-I in S6, *Security in Computing* from Elective-II in S7 and *Network Security Protocols* from Elective-III in S8. The Department may offer Elective Courses to enable students to utilize this opportunity, depending on the availability of faculty. The courses included from these areas under various Elective Buckets are shown in the table below.

Estd.

DIFFERENT SPECIALIZATIONS INTRODUCED THROUGH VARIOUS ELECTIVE BUCKETS						
BUC	SDECIAL ISATION	SEMESTER				
КЕТ	SIECIALISATION	S 6	S7	S 8		
1	SECURITY IN COMPUTING	FOUNDATIONS OF SECURITYIN COMPUTING (E-I)	SECURITY IN COMPUTING (E-II)	NETWORK SECURITY PROTOCOLS (E-III)		
2	COMPUTER PROGRAMMING	PROGRAMMIN G IN R (E-I)	WEB PROGRAMMING (E-II)	PROGRAMMIN G PARADIGMS (E-III)		
3	FORMAL METHODS IN SOFTWARE ENGINEERING	AUTOMATED VERIFICATION (E-I)	MODEL BASED SOFTWARE DEVELOPMENT (E-II)	SOFTWARE TESTING (E-V)		

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOU RS	CREDIT
	CAT 312	i CONCEPTS IN GRAPH THEORY	2-1-0		
	AIT 322	ii CONCEPTS IN COMPUTER GRAPHICS AND IMAGE PROCESSING	2-1-0		
D	CST 332	Iii FOUNDATIONSOFSECURITY INCOMPUTING	2-1-0		
D	CST 342	iv AUTOMATED VERIFICATION	2-1-0	3	3
	ADT 342	v DATA VISUALIZATION	2-1-0		
	AIT 362	vi PROGRAMMING IN R	2-1-0		
	CDT 372	vii MALWARE ANALYSIS IN DATA SCIENCE	2-1-0		

COURSES TO BE CONSIDERED FOR COMPREHENSIVE COURSE WORK

i DATA STRUCTURES

ii OPERATING SYSTEMS

iii COMPUTER ORGANIZATION AND ARCHITECTURE

iv DATABASE MANAGEMENT SYSTEMS

v DATA ANALYTICS

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedialclass.
- 2. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing the above listed 5 core courses studied from semesters 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in thecurriculum.
- 3. Mini project: It is introduced in the sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem- solving skills. Student Groups with 3 or 4 members should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a vivavoce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Mini Project coordinator for that program and projectguide.

Total marks: 150 - CIE 75 marks and ESE 75

marks Split up for CIE

Attendance	10
Project Guide	15
Project Report	10

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) 40

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT		
Α	CDT 401	CONCEPTS IN CLOUD COMPUTING	2-1-0	3	3		
В	CDT	PROGRAM ELECTIVE II	2-1-0	3	3		
C	CDT	OPEN ELECTIVE	2-1-0	3	3		
D	MCN 401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3			
S	CDL 411	CLOUD COMPU <mark>T</mark> ING LAB	0-0-3	3	2		
Т	CDQ 413	SEMINAR	0-0-3	3	2		
U	CDD 415	PROJECT PHASE I	0-0-6	6	2		
R/M/ H	VAC	Remedial/Minor/Honours course*	3-1-0	4	4		
	TOTAL 24* 15/19						
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honours course.						

2014

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AMT 413	i ADVANCED CONCEPTS OF MICROPROCESSOR AND MICRO CONTROLLER	2-1-0	AM AI	3
	CDT 423	ii CONCEPTS IN ARTIFICIAL INTELLIGENCE	2-1-0		
В	CST 433	iii SECURITY IN COMPUTING	2-1-0		
	CST 443	Iv MODEL BASED SOFTWARE DEVELOPMENT	2-1-0		
	CDT 453	v WEB MINING	2-1-0		
	CST 463	vi WEB PROGRAMMING	2-1-0		
	CST 473	vii NATURAL LANGUAGE PROCESSING	2-1-0		

PROGRAM ELECTIVE II

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the department for students of other undergraduate branches except of Computer Science & Engineering, Computer Science & Engineering(Data Science), Computer Science (Artificial Intelligence), Computer Science & Engineering(Artificial Intelligence & Machine Learning), Artificial Intelligence, Artificial Intelligence and Data Science, Artificial Intelligence and Machine Learning and Information Technology offered in the colleges under APJAKTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
С	CST 415	i INTRODUCTION TO MOBILE COMPUTING	2-1-0		
	CST 425	ii INTRODUCTION TO DEEP LEARNING	2-1-0		
	CST 435	iii COMPUTER GRAPHICS	2-1-0	3	3
	CST 445	iv PYTHON FOR ENGINEERS	2-1-0		
	CST 455	v OBJECT ORIENTED CONCEPTS	2-1-0		

NOTE :

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass 50				
Attendance	10			
Seminar Diary	10			
Guide	20			
Report	20			
Presentation	40			

- 3. Project Phase I: The course 'Project Work' is mainly intended to evoke the innovation and invention skills in a student. The course will provide an opportunity to synthesize and apply the knowledge and analytical skills learned, to be developed as a prototype or simulation. The project extends to 2 semesters and will be evaluated in the 7th and 8th semester separately, based on the achieved objectives. One third of the project credits shall be completed in 7th semester and two third in 8th semester. It is recommended that the projects may be finalized in the thrust areas of the respective engineering stream or as interdisciplinary projects. Importance should be given to address societal problems and developing indigenous technologies. The assignment to normally include:
 - Literature study/survey of published literature on the assigned topic
 - Formulation of objectives
 - Formulation of hypothesis/ design/ methodology
 - > Formulation of work plan and task allocation.
 - Block level design documentation
 - Seeking project funds from various agencies
 - Preliminary Analysis/Modeling/Simulation/Experiment/ Design/Feasibility study
 - Preparation of Phase 1 report

Total marks: 100, only CIE, minimum required to pass 50	
Guide	30
Interim evaluation by the Evaluation committee	20
Final evaluation by the Evaluation committee	30
Phase – I Report (By Evaluation committee)	20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT	
А	CDT 402	DEEP LEARNING FOR DATA SCIENCE	2-1-0	3	3	
В	CDT	PROGRAM ELECTIVE III	2-1-0	Λ^{3}	3	
С	CDT	PROGRAM ELECTIVE IV	2-1-0	3	3	
D	CDT	PROGRAM ELECTIVE V	2-1-0	3	3	
Т	CDT 404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1	
U	CDD 416	PROJECT PHASE II	0-0-12	12	4	
R/M/ H	VAC	Remedial/Minor/Honours course	3-1-0	4	4	
TOTAL				25*	17/21	
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honours course.					

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AIT 424	i INTRODUCTION TO BUSINESS ANALYTICS	2-1-0		
	CST 424	ii PROGRAMMING PARADIGMS	2-1-0		
D	CST 434	iii NETWORK SECURITY PROTOCOLS	2-1-0	3	3
В	CST 444	iv SOFT COMPUTING	2-1-0		
	CST 454	v FUZZY SET THEORY AND APPLICATIONS	2-1-0		
	CDT 464	vi BIG DATA SECURITY	2-1-0		
	CST 474	vii COMPUTER VISION	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOUR S	CREDIT
с	AMT 416	i HUMAN COMPUTER INTERACTION	2-1-0	AM AI	3
	AIT 426	ii MINING OF MASSIVE DATASETS	2-1-0		
	CST 436	iii PARALLEL COMPUTING	2-1-0		
	CST 446	iv DATA COMPRESSION TECHNIQUES	2-1-0		
	AIT 456	v INTRODUCTION TO REINFORCEMENT LEARNING	2-1-0		
	CST 466	vi DATA MINING	2-1-0		
	AIT 476	vii BIO-INSPIRED OPTIMIZATION TECHNIQUES	2-1-0		

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	CST 418	i HIGH PERFORMANCE COMPUTING	2-1-0	3	3
	CST 428	ii BLOCK CHAIN TECHNOLOGIES	2-1-0		
	CST 438	iii IMAGE PROCESSING TECHNIQUE	2-1-0		
	CST 448	iv INTERNET OF THINGS	2-1-0		
	CST 458	v SOFTWARE TESTING	2-1-0		
	CST 468	vi BIOINFORMATICS	2-1-0		
	CST 478	vii COMPUTATIONAL LINGUISTICS	2-1-0		

NOTE:

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

- 2. **Comprehensive Viva Voce:** The comprehensive viva voce in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semesters. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The objective of Project Work Phase II & Dissertation is to enable the student to extend further the investigative study taken up in Project Phase I, either fully theoretical/practical or involving both theoretical and practical work, under the mentoring of a Project Guide from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment shall normally include:
- > In depth study of the topic assigned in the light of the Report prepared under Phase I;
- > Review and finalization of the Approach to the Problem relating to the assigned topic;
- Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- > Final development of product/process, testing, results, conclusions and future directions;
- > Preparing a paper for Conference presentation/Publication in Journals, if possible;
- > Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75	
Guide	: 30
Interim evaluation, 2 times in the semester by a committee	: 50
Ouality of the report evaluated by the above committee	: 30

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by the final evaluation committee

(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct Comprehensive for 50 marks).

:40

MINOR

Minor is an additional credential a student may earn if she/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B. Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist bucket of 3-6 courses is identified for each Minor. Each bucket may rest on one or more foundation courses. A bucket may have sequences within it, i.e., advanced courses may rest on basic courses in the bucket. She/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by M slot courses.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required to award B. Tech with Minor is 182(162+20)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of Studies and approved by the Academic Council or 2 courses from the minor buckets listed here. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded if the registrant earn 20 credits form the minor courses.

The registration for minor program will commence from semester 3 and all the academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 5 buckets. The bucket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the bucket. Reshuffling of courses between various buckets will not be allowed. There is option to skip any two courses listed here and to opt for equivalent MOOC courses approved by the Academic Council. In any case, they should carry out a mini project based on the chosen area in S7 or S8. For example: Students who have registered FOR **B.TECH MINOR IN COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)** can opt to study the courses listed in minor baskets under Computer Science & Engineering Programme.

HONOURS

Honours is an additional credential a student may earn if she/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of a class. The University is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to *gain expertise*/get *specialized* in an area inside his/her major B. Tech discipline and to enrich knowledge in emerging/advanced areas in the concerned branch of engineering. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If a student is not earning credits for any one of the specified course for getting Honours, she/he is not entitled to get Honours. The individual course credits earned, however, will be reflected in the consolidated gradecard.

The courses shall be grouped into maximum of 3 buckets, each bucket representing a particular specialization in the branch. The students shall select only the courses from same bucket in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The Honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 +20).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or 2 courses from the same bucket as the above 3 courses. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under Honours.
- (iv) There won't be any supplementary examination for the courses chosen for Honours.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for Honours and there is no history of 'F' Grade in the entire span of the BTech Course.
- (vi) The registration for Honours program will commence from semester 4 and the all academic units offering Honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 5 buckets, each
bucket representing a particular specialization in the branch. The students shall select only the courses from same bucket in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. There is option to skip any two courses listed here if required, and to opt for equivalent MOOC courses approved by the Academic Council. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for **B.TECH IN COMPUTER SCIENCE AND ENGINEERING(DATA SCIENCE) WITH HONOURS** can opt to study the

		FECL	Ĩ	N	HON	OURS BUCKETS			C	AT		
S		BUCKET-1	Ļ	L Y	N N	BUCKET-2	-		23	BUCKET-3		
E M	Specialization - Security in Computing				Specialization –Computational Biology			Y S ₁	Specialization –Computer Vision			
E S T E R	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	CO UR SE NO	COURSE NAME	H C U R S	C R E D I T
S4	CST 292	NUMBER THEOR Y	4	4	AIT 294	COMPUTATIO NAL FUNDAMENT ALS FOR BIOINFORMA TICS	4		AIT 296	ADVANCED TOPICS IN COMPUTER GRAPHICS	4	4
S 5	CST 393	CRYPTOGRAPHI C ALGORITHMS	4	4	AIT 395	COMPUTATIO NAL BIOLOGY	4	4	AIT 397	ADVANCED CONCEPTS IN COMPUTER VISION	4	4
S6	CST 394	NETWORK SECURITY	4	4	AIT 396	MACHINE LEARNING IN COMPUTATIO NAL BIOLOGY	4	4	AIT 398	IMAGE AND VIDEO PROCESSING	4	4
S7	CST 495	CYBER FORENSICS	4	4	AIT 497	COMPUTATIO NAL HEALTH INFORMATIC S	4	4	AIT 499	SURVEILL ANCE VIDEO ANALYTIC S	4	4
S 8	CD D 496	Mini Project	4	4	CD D 496	Mini Project	4	4	CD D 496	Mini Project	4	4
Not	te: Name	e of the specialization	shal	ll b	e mentio	oned in the Honours	s De	gre	e to be a	awarded		

courses listed in one of the buckets shown below:

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique threeweek immersion Foundation Programme designed specifically for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social works and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batch- mates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

COMPUTER SCIENCE AND ENGINEERING

CURRICULUM FROM SEMESTERS I TO VIII

Every course of B. Tech. Programme shall be placed in one of the nine categories as listed in table below.

SI. No	APJ AB Category KAL	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	5
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	79
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits		162
10	Value Added Course (Optional)	VAC	20

No semester shall have more than five lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points		5	0	114		5	50		
Credits for Activity				N	2				2
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering Science Courses: Engineering Graphics, Programming in C, Basics of Electrical and Electronics Engineering, Basics of Civil and Mechanical Engineering,

Engineering Mechanics, Thermodynamics, Design Engineering, Materials Engineering, Workshops etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory Non-credit Courses: Environmental Science, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, Disaster Management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **CSL 201.** The first two letter code refers to the department offering the course. CS stands for course in Computer Science & Engineering, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description
Т	Theory based courses (other than lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major-, Mini- Projects)
Q	Seminar courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (non-zero even number) or in both the semesters (zero). The middle number could be any digit. CSL 201 is a laboratory course offered in Computer Science and Engineering department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a theory course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments in the second semester. These course numbers are to be given in the curriculum and syllabi.

Each course is offered by a Department and their two-letter course prefix is given in Table 2

SL No	Department	Course Prefix	SL No	Department	Course Prefix
1	Aeronautical Engineering	AO	23	Electronics and Communication Engineering	EC
2	Agriculture Engineering	AG	24	Electronics and Computer Engineering	ER
3	Applied Electronics and Instrumentation	AE	25	Electrical and Computer Engineering	EO
4	Artificial Intelligence	AI	26	Electrical and Electronics Engineering	EE
5	Artificial Intelligence and Data Science	AD	27	Food Technology	FT
6	Artificial Engineering and Machine Learning	AM	28	Humanities	HU
7	Automobile Engineering	AU	29	Industrial Engineering	IE
8	Biomedical Engineering	BM	30	Information Technology	IT
9	Biotechnology	BT	31	Instrumentation & Control	IC
10	Chemical Engineering	СН	32	Mandatory Courses	MC
11	Chemistry	CY	33	Mathematics	MA
12	Civil Engineering	CE	34	Mechanical Engineering	ME
13	Civil and Environmental Engineering	CN	35	Mechatronics	MR
14	Computer Science and Business Systems	СВ	36	Metallurgy	MT
15	Computer Science and Design	CX	37	Mechanical (Auto)	MU
16	Computer Science and Engineering	CS	38	Mechanical (Prod)	MP
17	Computer Science and Engineering (Artificial Intelligence)	CA 2	014 39	Naval & Ship Building	SB
18	Computer Science and Engineering (Artificial Intelligence and Machine Learning)	СМ	40	Physics	PH
19	Computer Science and Engineering (Data Science)	CD	41	Polymer Engineering	РО
20	Computer Science and Engineering (Cyber Security)	CC	42	Production Engineering	PE
21	Cyber Physical Systems	СР	43	Robotics and Automation	RA
22	Electronics & Biomedical	EB	44	Safety & Fire Engineering	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
В	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
1/2	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
С	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
1/2	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
1/2	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUN 101	LIFE SKILLS	2-0-2	4	
S	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
1/2	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
Т	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
1/2	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL	/	23/24	17
		2014			

SEMESTER II

SLOT	COURSE NO.	A R COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS , DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	Ç4Â	4
В	PHT 100	ENGINEERING PHYSICS A	3-1-0	4	4
1/2	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
С	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
1/2	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
D	EST 120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
1/2	EST 130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
Е	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	-
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
S	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
1/2	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
Т	ESL 120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
1/2	ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

- Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in S1 and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester
- 2 Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in S1 and Engineering Graphics in S2 & vice versa.
- 3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METALLURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening

practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES KS	L-T-P	HOURS	CREDIT		
А	MAT 203	DISCRETE MATHEMATICAL STRUCTURES	3-1-0	4	4		
В	CST 201	DATA STRUCTURES	3-1-0	4	4		
С	CST 203	LOGIC SYSTEM DESIGN	3-1-0	4	4		
D	CST 205	OBJECT ORIENTED PROGRAMMING USING JAVA	3-1-0	4	4		
Е	EST 200	DESIGN & ENGINEERING	2-0-0	2	2		
(1/2)	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2		
F	MCN 201	SUSTAINABLE ENGINEERING	2-0-0	2			
S	CSL 201	DATA STRUCTURES LAB	0-0-3	3	2		
Т	CSL 203	OBJECT ORIENTED PROGRAMMING LAB (IN JAVA)	0-0-3	3	2		
R/M	VAC	Remedial/Minor course	3-1-0	4	4		
	TOTAL 26* 22/26						
* Exclu	ding Hours t	o be engaged for Remedial/Minor c	course.				

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT		
Α	MAT 206	GRAPH THEORY	3-1-0	4	4		
В	CST 202	COMPUTER ORGANIZATIO N A ND ARCHITECTURE	3-1-0		4		
С	CST 204	DATABASE MANAGEMENT SYSTEMS	3-1-0	4	4		
D	CST 206	OPERATING SYSTEMS	3-1-0	4	4		
Е	EST 200	DESIGN & ENGINEERING	2-0-0	2	2		
(1/2)	HUT 200	PROFESSIONAL ETHICS	2-0-0	2	2		
F	MCN 202	CONSTITUTION OF INDIA	2-0-0	2			
S	CSL 202	DIGITAL LAB	0-0-3	3	2		
Т	CSL204	OPERATING SYS <mark>TE</mark> MS LAB	0-0-3	3	2		
R/M/ H	VAC	Remedial/Minor/Honors course	3-1-0	4	4		
	22/26						
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honors course.						

- Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT	
Α	CST 301	FORMAL LANGUAGES AND AUTOMATA THEORY	3-1-0	4	4	
В	CST 303	COMPUTER NETWORKS	3-1-0	Ģ₄A	4	
С	CST 305	SYSTEM SOFTWARE	3-1-0	4	4	
D	CST 307	MICROPROCESSORS AND MICROCONTROLLERS	3-1-0	4	4	
Е	CST 309	MANAGEMENT OF SOFTWARE SYSTEMS	3-0-0	3	3	
F	MCN 301	DISASTER MANAGEMENT	2-0-0	2		
S	CSL 331	SYSTEM SOFTWARE AND MICROPROCESSORS LAB	0-0-4	4	2	
Т	CSL 333	DATABASE MANAGEMENT SYSTEMS LAB	0-0-4	4	2	
R/M/ H	VAC	Remedial/Minor/Honors course*	2-0-0	4	4	
TOTAL 29* 23/27						
* Exclu	iding Hours t	o be engaged for Remedial/Minor/	Honors co	ourse.		

NOTE:

2014

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/ Honors course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURS E NO.	COURSES	L-T-P	HOURS	CREDIT			
А	CST 302	COMPILER DESIGN	3-1-0	T ⁴	<u> </u>			
В	CST 304	COMPUTER GRAPHICS AND IMAGE PROCESSING	3-1-0	4	4			
С	CST 306	ALGORITHM ANA LYSIS AND DESIGN	3-1-0	4	4 4			
D	CST	PROGRAM ELECTIVE I	2-1-0	3	3			
Е	HUT 300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3			
F	CST 308	COMPREHENSIVE COURSE WORK	1-0-0	1	1			
S	CSL 332	NETWORKING LAB	0-0-3	-3-	2			
Т	CSD 334	MINIPROJECT	0-0-3	3	2			
R/M/ H	VAC	Remedial/Minor/Honors course*	3-1-0	4	4			
		TOTAL		25*	23/27			
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honors course.							

Note:

Electives: This curriculum envisages to offer a learner an opportunity to earn proficiency in one of the five trending areas in Computer Science, namely Machine Learning, Data Science, Security in Computing, Formal Methods in Software Engineering and Hardware Technologies. Three courses each from the above areas are included through Elective Courses in different Elective Buckets. For example, a learner who is interested in the *Machine Learning* area may opt to take the elective courses - *Foundations of Machine Learning* from Elective-II in S6, *Machine Learning* from Elective-III in S7 and *Deep Learning* from Elective-III in S8. The Department may offer Elective Courses to enable students to utilize this opportunity, depending on the availability of faculty. The courses included from these areas under various Elective Buckets are shown in the table below.

	Different Specializations introduced through various Elective Buckets							
Bucke	G • 1° 4°	Semester						
t	Specialisation	S6	S7	S8				
1	Machine Learning	FOUNDATIONS OF MACHINE LEARNING (E-I)	M A C H I N E LEARNING (E-II)	DEEP LEARNING (E-III)				
2	Data Science	DATA ANALYTICS (E-I)	CLOUD COMPUTING (E-II)	BLOCK CHAIN TECHNOLOGIES (E-V)				
3	Security in Computing	FOUNDATIONS OF SECURITY IN COMPUTING (E-I)	SECURITY IN COMPUTING (E-II)	CRYPTOGRAPHY (E-III)				
4	Formal Methods in Software Engineering	A U T O M A T E D VERIFICATION (E- I)	MODEL BASED S OF T WARE DEVELOPMENT (E-II)	S O F T W A R E TESTING (E-V)				

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 312	i FOUNDATIONS OF MACHINE LEARNING	2-1-0		
	CST 322	ii DATA ANALYTICS	2-1-0		
	CST 332	iii FOUNDATIONS OF SECURITY IN COMPUTING	2-1-0		
D	CST 342	iv AUTOMATED VERIFICATION	2-1-0	3	3
	CST 362	vi PROGRAMMING IN PYTHON	2-1-0		
	CST 372	vii DATA AND COMPUTER COMMUNICATION	2-1-0		

COURSES TO BE CONSIDERED FOR COMPREHENSIVE COURSE WORK

I DISCRETE MATHEMATICAL STRUCTURES
ii DATA STRUCTURES
iii OPERATING SYSTEMS
iv COMPUTER ORGANIZATION AND ARCHITECTURE
v DATABASE MANAGEMENT SYSTEMS
vi FORMAL LANGUAGES AND AUTOMATA THEORY

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing the above listed 6 core courses studied from semesters 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum.
- 3. Mini project: It is introduced in the sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. Student Groups with 3 or 4 members should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be

demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva-voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Mini Project coordinator for that program and project guide.

Total marks: 150 - CIE 75 marks and ESE 75 marks

Split up for CIE	
Attendance	
Project Guide INIV D	Γ_{15}
Project Report	10

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) 40

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	CST 401	ARTIFICIAL INTELLIGENCE	2-1-0	3	3
В	CST	PROGRAM ELECTIVE II	2-1-0	3	3
С	CST	OPEN ELECTIVE	2-1-0	3	3
D	MCN 401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	CSL 411	COMPILER LAB	0-0-3	3	2
Т	CSQ 413	SEMINAR	0-0-3	3	2
U	CSD 415	PROJECT PHASE I	0-0-6	6	2
R/M/ H	VAC	Remedial/Minor/Honors course*	3-1-0	4	4
TOTAL 24* 15/19					
* Exclue	* Excluding Hours to be engaged for Remedial/Minor/Honors course.				

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 413	i MACHINE LEARNING	2-1-0		
	CST 423	ii CLOUD COMPUTING	2-1-0	AN	Λ
В	CST 433	iii SECURITY IN COMPUTING	2-1-0	ĈÂ	Ĺ
	CST 443	iv MODEL BASED SOFTWARE DEVELOPMENT	2-1-0	3	3
	CST 463	vi WEB PROGRAMMING	2-1-0		
	CST 473	vii NATURAL LANGUAGE PROCESSING	2-1-0		

PROGRAM ELECTIVE II

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of **COMPUTER SCIENCE & ENGINEERING** for students of other undergraduate branches except Computer Science & Engineering and Information Technology, offered in the colleges under KTU.

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
В	CST 415	i INTRODUCTION TO MOBILE COMPUTING	2-1-0	Y	
	CST 425	ii INTRODUCTION TO DEEP LEARNING	2-1-0		
	CST 435	iii COMPUTER GRAPHICS	2-1-0	3	3
	CST 445	iv PYTHON FOR ENGINEERS	2-1-0		
	CST 455	v OBJECT ORIENTED CONCEPTS	2-1-0		

NOTE :

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum req	uire	ed to pass 50
Attendance	1	10
Seminar Diary	1	10
Guide	1	20
Report	1	20
Presentation	:	40

- 3. Project Phase I: The course 'Project Work' is mainly intended to evoke the innovation and invention skills in a student. The course will provide an opportunity to synthesize and apply the knowledge and analytical skills learned, to be developed as a prototype or simulation. The project extends to 2 semesters and will be evaluated in the 7th and 8th semester separately, based on the achieved objectives. One third of the project credits shall be completed in 7th semester and two third in 8th semester. It is recommended that the projects may be finalized in the thrust areas of the respective engineering stream or as interdisciplinary projects. Importance should be given to address societal problems and developing indigenous technologies. The assignment to normally include:
 - Literature study/survey of published literature on the assigned topic
 - Formulation of objectives
 - Formulation of hypothesis/ design/ methodology
 - Formulation of work plan and task allocation.
 - Block level design documentation
 - Seeking project funds from various agencies
 - Preliminary Analysis/Modeling/Simulation/Experiment/ Design/Feasibility study
 - Preparation of Phase 1 report

Total marks: 100, only CIE, minimum required to pass 50Guide: 30Interim evaluation by the Evaluation committee: 20Final evaluation by the Evaluation committee: 30Phase – I Report (By Evaluation committee): 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	CST 402	DISTRIBUTED COMPUTING	2-1-0	3	3
В	CST	PROGRAM ELECTIVE III	2-1-0	Ç ₃ A	3
С	CST	PROGRAM ELECTIVE IV	2-1-0	3	3
D	CST	PROGRAM ELECTIVE V	2-1-0	3	3
Т	CST 404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	CSD 416	PROJECT PHASE II	0-0-12	12	4
R/M/ H	VAC	Remedial/Minor/Honors course	3-1-0	4	4
TOTAL 25* 17/21					17/21
* Exclu	* Excluding Hours to be engaged for Remedial/Minor/Honors course.				

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 414	i DEEP LEARNING	2-1-0		
4	CST 424	ii PROGRAMMING PARADIGMS	2-1-0	AN	Λ
В	CST 434	iii NETWORK SECURITY PROTOCOLS	2-1-0	A	
	CST 444	iv SOFT COMPUTING	2-1-0		3
	CST 454	v FUZZY SET THEORY AND APPLICATIONS	2-1-0		
	CST 464	vi EMBEDDED SYSTEMS	2-1-0		
	CST 474	vii COMPUTER VISION	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
С	CST 416	i FORMAL METHODS AND TOOLS IN SOFTWARE ENGINEERING	2-1-0		
	CST 426	ii CLIENT SERVER ARCHITECTURE	2-1-0		
	CST 436	iii PARALLEL COMPUTING	2-1-0		
	CST 446	iv DATA COMPRESSION TECHNIQUES	2-1-0	3	3
	CST 466	vi DATA MINING	2-1-0		
	CST 476	vii MOBILE COMPUTING	2-1-0	1	

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	CST 418	i HIGH PERFORMANCE COMPUTING	2-1-0		Λ
1	CST 428	ii BLOCK CHAIN TECHNOLOGIES	2-1-0	Â	
D	CST 438	iii IMAGE PROCESSING TECHNIQUE	2-1-0		3
	CST 448	iv INTERNET OF THINGS	2-1-0	5	5
	CST 458	v SOFTWARE TESTING	2-1-0		
	CST 468	vi BIOINFORMATICS	2-1-0		
	CST 478	vii COMPUTATIONAL LINGUISTICS	2-1-0		

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honors course (Mondays from 10 to 12 and Wednesdays from 10 to 12 PM). If a student does not opt for minor/honors programme, he/she can be given remedial class.
- 2. Comprehensive Viva Voce: The comprehensive viva voce in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semesters. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
- 3. **Project Phase II:** The objective of Project Work Phase II & Dissertation is to enable the student to extend further the investigative study taken up in Project Phase I, either fully theoretical/practical or involving both theoretical and practical work, under the mentoring of a Project Guide from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment shall normally include:

- In depth study of the topic assigned in the light of the Report prepared in Phase I;
- Review and finalization of the Approach to the Problem relating to the assigned topic;
- Detailed Analysis/Modeling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Presentation before the concerned evaluation committee

Total man	rks: 150, only CIE, minimum requi	red to pass 75	
Guide			: 30
Interim e	valuation, 2 times in the semester b	y a committee	: 50
Quality o	f the report evaluated by the above	committee	: 30
(The eval	luation committee comprises HoD	or a senior faculty men	nber, Project
coordinat	tor and project supervisor).		

Final evaluation by the final evaluation committee : 40 (The final evaluation committee comprises Project coordinator, expert from Industry/ research Institute and a senior faculty from a sister department. The same committee will conduct Comprehensive for 50 marks).

MINOR

Minor is an additional credential a student may earn if she/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist bucket of 3-6 courses is identified for each Minor. Each bucket may rest on one or more

foundation courses. A bucket may have sequences within it, i.e., advanced courses may rest on basic courses in the bucket. She/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by M slot courses.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required to award B.tech with Minor is 182 (162 + 20)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of Studies and approved by the Academic Council or 2 courses from the minor buckets listed here. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded if the registrant earn 20 credits form the minor courses.

(vi) The registration for minor program will commence from semester 3 and all the academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 5 buckets. The bucket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the bucket. Reshuffling of courses between various buckets will not be allowed. There is option to skip any two courses listed here and to opt for equivalent MOOC courses approved by the Academic Council. In any case, they should carry out a mini project based on the chosen area in S7 or S8. For example: Students who have registered for B.Tech Minor in Computer Science & Engineering can opt to study the courses listed below:

					MIN	OR BUCKETS							
S		BUCKET-1				BUCKET-2			BUCKET-3				
S E M	Specialization - Software Engineering				Spo	Specialization - Machine Learning				Specialization - Networking			
E S T E R	CO UR SE NO	COURSE NAME	H O U R S	C R E D I T	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	
S3	CST 281	OBJECT ORIENTED PROGRAMMING	4	4	CST 283	PYTHON FOR MACHINE LEARNING	4	4	CST 285	DATA COMMUNICAT ION	4	4	
S4	CST 282	PROGRAMMING METHODOLOGIE S	4	4	CST 284	MATHEMATIC S FOR MACHINE LEARNING	4	4	CST 286	INTRODUCTIO N TO COMPUTER NETWORKS	4	4	
S5	CST 381	CONCEPTS IN SOFTWARE ENGINEERING	4	4	CST 383	CONCEPTS IN MACHINE LE <mark>AR</mark> NING	4	4	CST 385	CLIENT SERVER SYSTEMS	4	4	
S6	CST 382	INTRODUCTION TO SOFTWARE TESTING	4	4	CST 384	CONCEPTS IN DEEP LEARNING	4	4	CST 386	WIRELESS NETWORKS AND IOT APPLICATION S	4	4	
S7	CSD 481	MINIPROJECT	4	4	CSD 481	MINIPROJECT	4	4	CSD 481	MINIPROJECT	4	4	
S8	CSD 482	MINIPROJECT	4	4	CSD 482	MINIPROJECT	4	4	CSD 482	MINIPROJECT	4	4	
Not	e-1: Na	me of the specialization	ı sh	all	be ment	ioned in the Minor	Deg	gree	to be av	warded			
Not min	e-2: An	y B.Tech students from ets.	n nc	on-O	Compute	er Science/non-IT st	reai	ns c	can regis	ster for the courses i	n th	ie	

HONORS

Honors is an additional credential a student may earn if she/he opts for the extra 20 credits needed for this in her/his own discipline. Honors is not indicative of a class. The University is providing this option for academically extra brilliant students to acquire Honors. Honors is intended for a student to *gain expertise*/get *specialized* in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the concerned branch of engineering. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honors, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honors." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If a student is not earning credits for any one of the specified course for getting Honors, she/he is not entitled to get Honors. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 buckets, each bucket representing a particular specialization in the branch. The students shall select only the courses from same bucket in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honors courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The Honors courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honors at the beginning of fourth semester. Total credits required is 182 (162 + 20).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or 2 courses from the same bucket as the above 3 courses. The classes for Honors shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under Honors.
- (iv) There won't be any supplementary examination for the courses chosen for Honors.
- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honors" will be awarded if overall CGPA is greater than

or equal to 8.5, earned a grade of 'C' or better for all courses chosen for Honors and there is no history of 'F' Grade in the entire span of the BTech Course.

(vi) The registration for Honors program will commence from semester 4 and the all academic units offering Honors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 5 buckets, each bucket representing a particular specialization in the branch. The students shall select only the courses from same bucket in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. There is option to skip any two courses listed here if required, and to opt for equivalent MOOC courses approved by the Academic Council. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for **B.Tech in Computer Science and Engineering with Honors** can opt to study the courses listed in one of the buckets shown below:

					HON	ORS BUCKETS							
S		BUCKET-1				BUCKET-2	BUCKET-3						
S E M	Specialization - Security in Computing				Spe	Specialization - Machine Learning				Specialization - Formal Methods			
E S T E R	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	CO URS E NO	COURSE NAME	H O U R S	C R E D I T	CO UR SE NO	COURSE NAME	H O U R S	C R E D I T	
S4	CST 292	NUMBER THEORY	4	4	CST 294	COMPUTATIO NAL FUNDAMENT ALS FOR MACHINE LEARNING	4	4	CST 296	PRINCIPLES OF PROGRAM ANALYSIS AND VERIFICATION	4	4	
S5	CST 393	CRYPTOGRAPHI C ALGORITHMS	4	4	CST 395	NEURAL NETWORKS AND DEEP LEARNING	4	4	CST 397	PRINCIPLES OF MODEL CHECKING	4	4	
S6	CST 394	NETWORK SECURITY	4	4	CST 396	ADVANCED TOPICS IN MACHINE LEARNING	4	4	CST 398	THEORY OF COMPUTABILI TY AND COMPLEXITY	4	4	
S 7	CST 495	CYBER FORENSICS	4	4	CST 497	REINFORCEM ENT LEARNING	4	4	CST 499	LOGIC FOR COMPUTER SCIENCE	4	4	
S8	CSD 496	MINIPROJECT	4	4	CSD 496	MINIPROJECT	4	4	CSD 496	MINIPROJECT	4	4	
Not	e: Name	e of the specialization s	hal	l be	e mentio	ned in the Honors I	Degi	ee	to be aw	varded			

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique threeweek immersion Foundation Programme designed specifically for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social works and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

CURRICULUM I TO VIII: B. TECH AUTOMOBILE ENGINEERING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	НМС	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	- 22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	16	52
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum.

Semester-wise credit distribution shall be as below:

Sem		1	2	3	4	5	6	7	8	Total
Credits		17	21	22	22	23	23	15	17	160
Activity Points			50				1	50		
Credits Activity	for				2					2
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc

Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.

Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance & Accounting, Life Skills, Professional Communication, Economics etc

Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like **E C L 2 0 1.** The first two letter code refers to the department offering the course. EC stands for course in Electronics & Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the following table.

Code	Description				
Т	Theory based courses (other the lecture hours, these courses can have tutorial				
	and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)				
L	Laboratory based courses (where performance is evaluated primarily on the basis				
	of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)				
N	Non-credit courses				
D	Project based courses (Major, Mini Projects)				
Q	Seminar Courses				

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Each course is offered by a Department and their two-letter course prefix is given in Table 2

SL No	Department	Course Prefix	SL No	Department	Course
1	Aeronautical Engineering	AO	23	Electronics and Communication	EC
2	Agriculture Engineering	AG	24	Electronics and Computer Engineering	ER
3	Applied Electronics and Instrumentation	AE	25	Electrical and Computer Engineering	EO
4	Artificial Intelligence	AI	26	Electrical and Electronics Engineering	EE
5	Artificial Intelligence and Data Science	AD	27	Food Technology	FT
6	Artificial Engineering and Machine Learning	AM	28	Humanities	HU
7	Automobile Engineering	AU	29	Industrial Engineering	IE
8	Biomedical Engineering	BM	30	Information Technology	IT
9	Biotechnology	BT	31	Instrumentation & Control	IC
10	Chemical Engineering	СН	32	Mandatory Courses	MC
11	Chemistry	CY	33	Mathematics	MA
12	Civil Engineering	CE	34	Mechanical Engineering	ME
13	Civil and Environmental Engineering	CN	35	Mechatronics	MR
14	Computer Science and Business Systems	СВ Е	36	Metallurgy	MT
15	Computer Science and Design	CX	37	Mechanical (Auto)	MU
16	Computer Science and Engineering	CS	38	Mechanical (Prod)	MP
17	Computer Science and Engineering (Artificial Intelligence)	CA 2	014 39	Naval & Ship Building	SB
18	Computer Science and Engineering (Artificial Intelligence and Machine Learning)	СМ	40	Physics	РН
19	Computer Science and Engineering (Data Science)	CD	41	Polymer Engineering	РО
20	Computer Science and Engineering (Cyber Security)	CC	42	Production Engineering	PE
21	Cyber Physical Systems	СР	43	Robotics and Automation	RA
22	Electronics & Biomedical	EB	44	Safety & Fire Engineering	FS

Table 2: Departments and their codes

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
B 1/2	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN101	LIFE SKILLS	2-0-2	4	
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		23/24 *	17

*Minimum hours per week

NOTE:

To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
B 1/2	PHT110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT100	ENGINEERING CHEMISTRY	3-1-0	4	4
C 1/2	EST100	ENGINEERING MECHANICS	2-1-0	3	3
	EST110	ENGINEERING GRAPHICS	2-0-2	4	3
D 1/2	EST120	BASICS OF CIVIL & MECHANICAL ENGINEERING	4-0-0	4	4
	EST130	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN102	PROFESSIONAL COMMUNICATION	2-0-2	4	
F	EST102	PROGRAMMING IN C	2-1-2	5	4
S 1/2	PHL120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
T 1/2	ESL120	CIVIL & MECHANICAL WORKSHOP	0-0-2	2	1
	ESL130	ELECTRICAL & ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL Estd.		28/29	21

- Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 & vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
- Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 & vice versa.

3. Basics of Civil & Mechanical Engineering and Basics of Electrical & Electronics Engineering shall be offered in both semesters. Basics of Civil & Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.

Basics of Electrical & Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil & Mechanical Engineering in one semester should attend Civil & Mechanical Workshop in the same semester and students having Basics of Electrical & Electronics Engineering in a semester should attend Electrical & Electronics Engineering in a semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency & accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover & back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT201	PARTIAL DIFFERENTIAL EQUATION	3-1-0	4	4
		AND COMPLEX ANALYSIS			
В	MET201	MECHANICS OF SOLIDS	3-1-0	4	4
С	AUT201	AUTOMOTIVE CHASSIS	3-1-0	4	4
D	AUT203	ENGINEERING THERMODYNAMICS	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN201	SUSTAINABLE ENGINEERING	2-0-0	2	
S	AUL201	AUTOMOBILE LAB	0-0-3	3	2
Т	MEL203	MATERIALS TESTING LAB	0-0-3	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	3-1-0	4 *	4
		TOTAL	1	26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	MAT202	PROBABILITY, STATISTICS AND	3-1-0	4	4
		NUMERICAL METHODS			
В	AUT202	FLUID MECHANICS AND MACHINERY	3-1-0	4	4
	() L _	ADDULK	a hard is	1.4.1	
C	AUT204	AUTO POWER PLANT	3-1-0	4	4
D	AUT206	AUTOMOTIVE TRANSMISSION	3-1-0	4	4
E 1/2	EST200	DESIGN & ENGINEERING	2-0-0	2	2
	HUT200	PROFESSIONAL ETHICS	2-0-0	2	2
F	MCN202	CONSTITUTION OF INDIA	2-0-0	2	
S	MEL202	FM & HM LAB	0-0-3	3	2
Т	AUL202	AUTOMOBILE LAB II	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		26/30	22/26

- 1. Design & Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design & Engineering in S3 and Professional Ethics in S4 & vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student doesn't opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
А	AUT301	THEORY OF MACHINES	3-1-0	4	4
В	AUT303	MANUFACTURING PROCESS	3-1-0	4	4
С	AUT305	HYBRID AND FUEL CELL VEHICLES	3-1-0	4	4
D	AUT307	MATERIAL SCIENCE AND METALLURGY	3-1-0	4	4
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	MUL331	PRODUCTION ENGINEERING LAB	0-0-3	3	2
Т	MEL333	THERMAL ENGINEERING LAB-I	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL	1	27/31	23/27

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade-in S5 and Management for Engineers in S6 and vice versa.
- 2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MET302	HEAT & MASS TRANSFER	3-1-0	4	4
В	AUT304	AUTOMOTIVE ELECTRICAL AND ELECTRONICS	3-1-0	4	4
С	AUT306	AUTOMOTIVE COMPONENTS DESIGN	3-1-0	4	4
D	AUTXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	AUT308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	MEL332	COMPUTER AIDED DESIGN & ANALYSIS LAB	0-0-3	3	2
Т	AUL334	AUTOMOBILE LAB III	0-0-3	3	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT312	TWO AND THREE WHEELED VEHICLE	2-1-0		
	AUT322	NUMERICAL METHODS	2-1-0	-	
D	AUT332	VEHICLE INSPECTION AND MAINTENANCE	2-1-0	3	3
	AUT342	VEHICLE PERFORMANCE AND TESTING	2-1-0		
	AUT352	AUTOMOTIVE POLLUTION AND TESTING	2-1-0		
	AUT362	MECHATRONICS AND CONTROL SYSTEMS	2-1-0		
	AUT372	CAD /CAM	2-1-0	1	

Estd.

NOTE:

- Industrial Economics & Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics & Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	AUT401	ADVANCED IC ENGINES	2-1-0	3	3
В	AUTXXX	PROGRAM ELECTIVE II	2-1-0	3	3
С	AUTXXX	OPEN ELECTIVE	2-1-0	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	2-1-0	3	
S	AUL411	AUTOMOBILE LAB IV	0-0-3	3	2
Т	AUQ413	SEMINAR	0-0-3	3	2
U	AUD415	PROJECT PHASE I	0-0-6	6	2
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		24/28	15/19

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT413	ALETERNATE ENERGY SOURCES FOR AUTOMOBILE	2-1-0		
	AUT423	VEHICLE AERODYNAMICS	2-1-0	3	3
В	AUT433	THEORY OF VIBRATIONS	2-1-0		
	AUT443	MARKETING MANAGEMENT	2-1-0]	
	AUT453	DESIGN OF MACHINE ELEMENTS	2-1-0]	
	AUT463	VEHICLE DESIGN DATA	2-1-0		
		CHARACTERISTICS			
	AUT473	HEATING VENTILATION AND AIRCONDITIONING	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of AUTOMOBILE ENGINEERING for students of other undergraduate branches offered in the college.

	TEC	THNOLOGI	0	AT	
SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
		INIVED SIT	N		
	AUT415	MODERN AUTOMOTIVE TECHNOLOGY	2-1-0		
	AUT425	HYBRID AND ELECTRIC VEHICLES	2-1-0		
	AUT435	AUTOMOTIVE ERGONOMICS AND	2-1-0	3	3
С		SAFETY			
	AUT445	AVG AND AUTONOMOUS VEHICLES	2-1-0		
	AUT455	COMPUTER SIMULATION AND	2-1-0		
		ANALYSIS OF AUTOMOTIVE SYSTEMS			

NOTE :

- *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum requ	uired to pass 50
Attendance	: 10
Seminar Diary	: 10
Guide	: 20
Report	: 20
Presentation	: 40

- 3. Project Phase I: The course 'Project Work' is mainly intended to evoke the innovation and invention skills in a student. The course will provide an opportunity to synthesize and apply the knowledge and analytical skills learned, to be developed as a prototype or simulation. The project extends to 2 semesters and will be evaluated in the 7th and 8th semester separately, based on the achieved objectives. One third of the project credits shall be completed in 7th semester and two third in 8th semester. It is recommended that the projects may be finalized in the thrust areas of the respective engineering stream or as interdisciplinary projects. Importance should be given to address societal problems and developing indigenous technologies. The assignment to normally include:
 - Literature study/survey of published literature on the assigned topic
 - Formulation of objectives
 - Formulation of hypothesis/ design/ methodology
 - Formulation of work plan and task allocation.
 - Block level design documentation
 - Seeking project funds from various agencies
 - Preliminary Analysis/Modeling/Simulation/Experiment/ Design/Feasibility study
 - Preparation of Phase 1 report

pass 50
: 30
: 20
: 30
: 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	AUT402	VEHICLE DYNAMICS	2-1-0	3	3
В	AUTXXX	PROGRAM ELECTIVE III	2-1-0	3	3
С	AUTXXX	PROGRAM ELECTIVE IV	2-1-0	3	3
D	AUTXXX	PROGRAM ELECTIVE V	2-1-0	3	3
Т	AUT404	COMPREHENSIVE COURSE VIVA	1-0-0	1	1
U	AUD416	PROJECT PHASE II	0-0-12	12	4
R/M/H	VAC	Remedial/Minor/Honours course	3-1-0	4*	4
		TOTAL		25/29	17/21

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT414	SPECIAL TYPES OF VEHICLES	2-1-0		
	AUT424	ENGINE AND VEHICLE MANAGEMENT	2-1-0		
		SYSTEM		3	3
В	AUT434	ADVANCED METAL JOINING	2-1-0		
		TECHNIQUES			
	AUT444	AGV AND AUTONOMOUS VEHICLE	2-1-0		
	AUT454	SUPPLY CHAIN MANAGEMENT	2-1-0		
	AUT464	AEROSPACE ENGINEERING	2-1-0		
	AUT474	METROLOGY AND	2-1-0		
		MEASUREMENTS			
		2014			

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT416	OPERATIONS MANAGEMENT IN AUTO INDUSTRY	2-1-0		
с	AUT426	AUTOMOTIVE COMFORT AND SAFETY ENGINEERING	2-1-0	3	3
	AUT436	PRODUCT DESIGN AND LIFECYCLE	2-1-0		

	MANAGEMENT		
AUT446	ADVANCED AUTOMOTIVE	2-1-0	
	MANUFACTURING MATERIALS		
AUT456	TOTAL QUALITY MANAGEMENT	2-1-0	
AUT466	VEHICLE MAINTENANCE	2-1-0	
AUT476	MACHINE LEARNING	2-1-0	

JUL KALA

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	AUT418	VEHICLE TRANSPORT AND FLEET MANAGEMENT	2-1-0		
D	AUT428	VEHICLE BODY ENGINEERING AND SSFETY	2-1-0	3	3
	AUT438	POWER PLANT ENGINEERING	2-1-0		
	AUT448	ADVANCED METAL JOINING TECHNIQUES	2-1-0		
	AUT458	SIMULATION AND ANALYSIS OF AUTO COMPONENTS	2-1-0		
	AUT468	HYDRAULICS AND PNEUMATICS	2-1-0		
	AUT478	ADVANCED METAL CASTING	2-1-0		

NOTE:

- 1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
- 2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voice for 50 marks. The viva voice shall be conducted based on the core subjects studied from third to eighth semester. The viva voice will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.

:40

3. **Project Phase II:** The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/ practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

 \succ In depth study of the topic assigned in the light of the Report prepared under Phasel;

> Review and finalization of the Approach to the Problem relating to the assigned topic;

Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/Experiment as needed;

Final development of product/process, testing, results, conclusions and future directions;

Preparing a paper for Conference presentation/Publication in Journals, if possible;

Preparing a Dissertation in the standard format for being evaluated by the Department;

Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75	
Guide	: 30
Interim evaluation, 2 times in the semester by a committee	: 50
Quality of the report evaluated by the above committee	: 30

(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by the final evaluation committee

(The final evaluation committee comprises Project coordinator, expert from Industry/ research Institute and a senior faculty from a sister department. The same committee will conduct Comprehensive for 50 marks).

MINOR

Minor is an additional credential a student may earn if s/he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

Esta:

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required

courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by **M slot courses**.

(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 (162 + 20 credits from value added courses)

(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S7 or in S8. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.

(iv) There won't be any supplementary examination for the courses chosen for Minor.

(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.

(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in AUTOMOBILE ENGINEERING Branch can opt to study the courses listed below:

CENACCTED				
SEIVIESTER	HOURS	CREDIT		
\$3	AUT281	FUNDAMENTALS OF AUTOMOBILES ENGINEERING	4	4
S4	AUT282	AUTOMOTIVE CHASSIS AND ENGINE COMPONENTS	4	4
S5	AUT381	DYNAMICS OF AUTOMOBILES	4	4

AUTOMOBILE ENGINEERING

S6	AUT382	MODERN AUTOMOTIVE TECHNOLOGY	4	4
S7	AUD481	MINIPROJECT	4	4
S8	AUD482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if s/he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.

- (i) The curriculum/syllabus committee/BOS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
- (ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 (162 + 20 credits from value added courses).
- (iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of 'C' or better for all courses under honours.
- (iv) There won't be any supplementary examination for the courses chosen for honours.

- (v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5, earned a grade of 'C' or better for all courses chosen for honours and without any history of 'F' Grade.
- (vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. Students who have registered for **B.Tech Honours in AUTOMOBILE** can opt to study the courses listed below:

SEMESTER		GROUP		
	Course No.	Course Name	HOURS	CREDIT
S4	AUT292	INCOMPRESSIBLE AND COMPRESSIBLE FLOWS	4	4
S5	AUT393	ADVANCED THEORY OF VIBRATIONS	4	4
S6	AUT394	IC ENGINES AND ADVANCED COMBUSTION STRATEGIES	4	4
S7	AUT495	SIMULATION AND ANALYSIS OF IC ENGINE PROCESS	4	4
S8	AUD496	MINIPROJECT	4	4

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batch mates and sensiors and start working as a team with them. The program is structured around the following five themes:

Estd.

The programme is designed keeping in mind the following objectives:

• Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.

- **Creativity**: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- **Social Awareness**: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- **Physical Activities & Sports**: Engage students in sports and physical activity to ensure healthy physical and mental growth.

APJAbdul Kalam Technological University – Curriculum & Syllabus

Sl	Name of Programme	Page
No:		No:
1	B.Tech Automobile Engineering(2015 Scheme)	1
2	B.Tech Automobile Engineering(2019 Scheme)	207
3	B.Tech Civil Engineering (2015 Scheme)	425
4	M.Tech Computer Aided Structural Engineering	439
5	B.Tech Civil Engineering (2019 Scheme)Curriculum	506
6	B.Tech Civil Engineering (2019 Scheme)Syllabus	527
7	B.Tech Computer Science and Engineering (2015	791
	Scheme)Curriculum	
8	B.Tech Computer Science and Engineering (2015	806
	Scheme)syllabus	
9	B.Tech Computer Science and Engineering (2019	1013
	Scheme)Curriculum	
10	B.Tech Computer Science and Engineering (2019	1101
	Scheme)Syllabus	
11	B.Tech Electronics and Communication Engineering	1039
	(2019 Scheme)curriculum	
12	B.Tech Electronics and Communication Engineering	1827
1.0	(2019 Scheme)Syllabus	1010
13	B.Tech Electronics and Communication Engineering	1812
1.4	(2015 Scheme)Curriculum	1514
14	B.Tech Electronics and Communication Engineering	1514
15	(2015 Scheme)Syllabus	1060
15	B. Tech Electrical and Electronics Engineering (2019	1060
16	P. Tash, Electrical and EElectronicsEngineering (2010	2417
10	Scheme) sullabus	2417
17	B Tech Electrical and Electronics Engineering (2015	2070
1/	Scheme) curriculum	2717
18	B Tech Electrical and Electronics Engineering (2015	2115
10	Scheme)Syllabus	2113
19	B.Tech Mechanical Engineering (2015 Scheme)	2830
	Curriculum	
20	B.Tech Mechanical Engineering (2015 Scheme) Syllabus	2763
21	B.Tech Mechanical Engineering (2019 Scheme)	1081
	curriculum	
22	B.Tech Mechanical Engineering (2019 Scheme) syllabus	3049

SEMESTER - I

Course code	Course name	L-T-P	Credits	Exam slot
MA101	Calculus	3-1-0	4	А
PH100	Engineering Physics	3-1-0	4	В
CY100	Engineering Chemistry	3-1-0	4	(1/2)
BE100	Engineering Mechanics	3-1-0	4	С
BE110	Engineering Graphics	1-1-3	3	(1/2)
BE101-02	Introduction to Mechanical Engineering	2-1-0	3	D
BE103	Introduction to Sustainable Engineering	2-0-1	3	E
CE100	Basics of Civil Engineering	2-1-0	3	
EE100	Basics of Electrical Engineering	2-1-0	3	F
EC100	Basics of Electronics Engineering	2-1-0	3	(1/3)
PH110	Engineering Physics Lab	0-0-2	1	S
CY110	Engineering Chemistry Lab	0-0-2	1	(1/2)
CE110	Civil Engineering Workshops	0-0-2	1	
ME110	Mechanical Engineering Workshop	0-0-2	1	Т
EE110	Electrical Engineering Workshop	0-0-2	1	(2/4)
EC110	Electronics Engineering Workshop	0-0-2	1	
	U100 Language lab / CAD Practice / Bridge courses / Micro Projects etc	0-0- 2/3		U
	V100 Entrepreneurship / TBI / NCC / NSS / Physical Education etc.	0-0-2	Activity points	V

Total Credits: 24/23

Hours: 30

Cumulative Credits: 24/23

SEMESTER – II

Course code	Course name	L-T-P	Credits	Exam slot
MA102	Differential Equations	3-1-0	4	А
PH100	Engineering Physics	3-1-0	4	В
CY100	Engineering Chemistry	3-1-0	4	(1/2)
BE100	Engineering Mechanics	3-1-0	4	С
BE110	Engineering Graphics	1-1-3	3	(1/2)
BE102	Design & Engineering	2-0-2	3	D
CE100	Basics of Civil Engineering	2-1-0	3	
EE100	Basics of Electrical Engineering	2-1-0	3	E, F
EC100	Basics of Electronics Engineering	2-1-0	3	(2/3)
PH110	Engineering Physics Lab	0-0-2	1	S
CY110	Engineering Chemistry Lab	0-0-2	1	(1/2)
CE110	Civil Engineering Workshops	0-0-2	1	
ME110	Mechanical Engineering Workshop	0-0-2	1	Т
EE110	Electrical Engineering Workshop	0-0-2	1	(2/4)
EC110	Electronics Engineering Workshop	0-0-2	1	
	U100 Language lab / CAD Practice / Bridge courses / Micro Projects etc	0-0- 1/2		U
	V100 Entrepreneurship / TBI / NCC / NSS / Physical Education etc.	0-0-2	Activity points	V
Total Credits: 24/23Hours: 30Cumulative Credits: 47				

Total Credits: 24/23

SEMESTER - III

Course code	Course name	L-T-P	Credits	Exam slot
MA201	Linear Algebra & Complex Analysis	3-1-0	4	А
ME201	Mechanics of Solids	3-1-0	4	В
ME200	Fluid Mechanics & Machinery	3-1-0	4	С
AU201	S I Engines & Combustion	3-1-0	4	D
AU203	Auto Chassis	3-0-0	3	E
HS200	Business Economics	3-0-0	3	F
HS210	Life Skills	2-0-2	3	(1/2)
ME230	Fluid Mechanics & Machines Lab	0-0-3	1	S
CE230	Material Testing Lab	0-0-3	1	Т
Total Credits: 24 Hours: 28/29 Cumulative Credits: 71				

SEMESTER – IV

Course code	Course name	L-T-P	Credits	Exam slot
MA202	Probability Distributions, Transforms and Numerical Methods	3-1-0	4	А
AU202	Advanced Thermodynamics	3-1-0	4	В
AU204	C I Engines & Combustion	4-0-0	4	С
AU206	Auto Transmission	3-0-0	3	D
AU208	Computer Programming	3-0-0	3	Е
HS200	Business Economics	3-0-0	3	F
HS210	Life Skills	2-0-2	3	(1/2)
AU232	Computer Programming Lab	0-0-3	1	S
AU234	Vehicle Systems Lab	0-0-3	1	Т
Total Credits: 23Hours: 28/27Cumulative Credits: 94				

SEMESTER – V

Course code	Course name	L-T-P	Credits	Exam slot
ME307	Machine Design I	3-1-0	4	А
ME309	Metallurgy & Material Science	3-0-0	3	В
ME311	Manufacturing Process	3-0-0	3	С
EE311	Electrical Drives & Control for Automation	3-0-0	3	D
AU307	Vehicle Body Engineering	3-0-0	3	E
	Elective - I	3-0-0	3	F
AU341	Design Project	0-1-2	2	S
ME333	Heat Engines Lab	0-0-3	1	Т
ME335	Production Engineering Lab	0-0-3	1	U
Total	Credits: 23 Hours: 28	Cumula	tive Cred	its: 117

Elective – I

AU361	Alternative Fuels & Energy Sources
AU363	Plastics & Composites in Automobile
AU365	Automotive Pollution & Testing
ME367	Non-Destructive Testing
ME369	Tribology

SEMESTER – VI

Course code	Course name	L-T-P	Credits	Exam slot
ME302	Heat & Mass Transfer	3-1-0	4	А
ME304	Dynamics of Machinery	2-1-0	3	В
ME314	Machine Design II	3-0-0	3	С
AU302	Automotive Electrical and Electronics	3-0-0	3	D
HS300	Principles of Management	3-0-0	3	E
	Elective - II	3-0-0	3	F
ME332	Computer Aided Design & Analysis Lab	0-0-3	1	S
AU332	Auto Electrical & Electronics Lab	0-0-3	1	Т
AU352	Comprehensive Exam	0-1-1	2	U
Total Credits: 23Hours: 27Cumulative Credits: 140				

Elective - II

AU362	Hybrid and Fuel Cell Vehicles
AU364 Vehicle Performance and Testing	
AU366	Vehicle Aerodynamics
ME368	Marketing Management
ME374	Theory of Vibration

SEMESTER – VII

Course code	Course name	L-T-P	Credits	Exam slot
AU401	Automotive System Design	4-0-0	4	А
AU403	Vehicle Dynamics	3-0-0	3	В
AU405	Automotive Refrigeration & Air Conditioning	3-0-0	3	С
AU407	Advanced I C Engines	3-0-0	3	D
AU409	Simulation & Analysis of Auto Components	3-0-0	3	Е
	Elective – III	3-0-0	3	F
AU451	Seminar & Project Preliminary	0-1-4	2	S
AU431	Autotronics Lab	0-0-3	1	Т

Total Credits: 22 Hours: 27

Cumulative Credits: 162

Elective - III

AU461	Automotive Comfort & Safety Engineering
AU463	Operation Management in Auto Industry
AU465	Product Design & Life cycle Management
AU410	Vehicle Transport & Fleet Management

SEMESTER – VIII

Course code	Course name	L-T-P	Credits	Exam slot
AU402	Two & Three Wheelers	3-0-0	3	А
AU404	Engine & Vehicle Management Systems	3-0-0	3	В
	Elective – IV	3-0-0	3	С
	Elective - V (Non-departmental)	3-0-0	3	D
AU492	Project		6	
Total	Credits: 18 Hours: 30	Cumula	tive Cred	its: 180

Elective – IV

AU462	Vehicle Maintenance
AU464	Special Type of Vehicles
AU466	Automobile Manufacturing Technology
AU468	AGV & Autonomous Vehicles
AU472	Metrology and Instrumentation

COURSE NO.	COURSE NAME	CREDITS	YEAR OF INTRODUCTION
MA 101	CALCULUS	4	2016

In this course the students are introduced to some basic tools in Mathematics which are useful in modelling and analysing physical phenomena involving continuous changes of variables or parameters. The differential and integral calculus of functions of one or more variables and of vector functions taught in this course have applications across all branches of engineering. This course will also provide basic training in plotting and visualising graphs of functions and intuitively understanding their properties using appropriate software packages.

Syllabus

Single Variable Calculus and Infinite series, Functions of more than one variable, Partial derivatives and its applications, Calculus of vector valued functions, Multiple Integrals.

Expected outcome

At the end of the course the student will be able to (i) check convergence of infinite series (ii) find maxima and minima of functions two variables (iii) find area and volume using multiple integrals (iv) apply calculus of vector valued functions in physical applications and (v) visualize graphs and surfaces using software or otherwise.

Text Books

(1)Anton, Bivens, Davis: Calculus, John Wiley and Sons, 10thed

(2)Thomas Jr., G. B., Weir, M. D. and Hass, J. R., Thomas' Calculus, Pearson

References:

- 1. Sengar and Singh, Advanced Calculus, Cengage Learning, Ist Edition
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India edition, 10thed.
- 3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- 4. N. P. Bali, Manish Goyal, Engineering Mathematics, Lakshmy Publications
- 5. D. W. Jordan, P Smith. Mathematical Techniques, Oxford University Press, 4th

Edition.

 A C Srivastava, P K Srivasthava, Engineering Mathematics Vol 1. PHI Learning Private Limited, New Delhi.

	A THE A DEDITIT LC.	T AL	1
	APT ABDUL KA	ALAN	1
	COURSE NO: MA101	L-T-P:3-1-0	-
	COURSE NAME: CALCULUS	CREDITS:4	
MODULE	CONTENT	HRS	END SEM. MARK %
Ι	Single Variable Calculus and Infinite series (Book I – sec 9.3,9.5,9.6,9.8) Basic ideas of infinite series and convergence - .Geometric series- Harmonic series-Convergence tests-comparison, ratio, root tests (without proof). Alternating series- Leibnitz Test- Absolute convergence, Maclaurins series-Taylor series - radius of convergence. (For practice and submission as assignment only: Sketching, plotting and interpretation of hyperbolic functions using suitable software. Demonstration of convergence of series bysoftware packages)	9	15%
	Partial derivatives and its applications(Book I -sec. 13.3 to 13.5 and 13.8) Partial derivatives–Partial derivatives of functions of more than two variables - higher order partial derivatives - differentiability, differentials and local linearity -	5	
II	The chain rule – Maxima and Minima of functions of two variables - extreme value theorem (without proof)-relative extrema .	4	15%

	FIRST INTERNAL EXAM		
	Calculus of vector valued functions(Book I- 12.1,12.2,12.4&12.6,13.6 &13.7)		
III	 Introduction to vector valued functions-parametric curves in 3-space Limits and continuity – derivatives - tangent lines – derivative of dot and cross product-definite integrals of vector valued functions- unit tangent-normal- velocity-acceleration and speed–Normal and tangential components of acceleration. Directional derivatives and gradients-tangent planes and normal vectors (For practice and submission as assignment only: Graphing parametric curves and surfaces using software packages) 	ALAA ICA Y ₃ 3	15%
IV	Multiple integrals (Book I-sec. 14.1, 14.2, 14.3, 14.5) Double integrals- Evaluation of double integrals – Double integrals in non-rectangular coordinates- reversing the order of integration- Area calculated as a double integral- Triple integrals(Cartesian co ordinates only)- volume calculated as a triple integral- (applications of results only)	4 2 2 2 2	15%
	SECOND INTERNAL EXAM		
	Topics in vector calculus		
	(Book I-15.1, 15.2, 15.3)		
	Vector and scalar fields- Gradient fields –	2	

	conservative fields and potential functions –	2	
	divergence and curl - the ∇ operator - the	2	20%
V	Laplacian ∇^2 ,		
	Line integrals - work as a line integral-	2	
	independence of path-conservative vector field –	L2AA	Λ
	(For practice and submission as assignment only: graphical representation of vector fields using software packages)	ICA Y	a contra c
	Topics in vector calculus (continued)		
	(Book I sec., 15.4, 15.5, 15.7, 15.8)		
	Green's Theorem (without proof- only for simply connected region in plane),	2	
	surface integrals –		
VI	Divergence Theorem (without proof for evaluating surface integrals),	3	20%
	Stokes' Theorem (without proof for evaluating line integrals)	3	
	(All the above theorems are to be taught in regions in the rectangular co ordinate system only)	ý	
	END SEMESTER EXAM		
		1	

Open source software packages such as gnuplot, maxima, scilab ,geogebra or R may be used as appropriate for practice and assignment problems.

TUTORIALS: Tutorials can be ideally conducted by dividing each class in to three groups. Prepare necessary materials from each module that are to be taught using computer. Use it uniformly to every class.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
PH100	ENGINEERING PHYSICS	3-1-0-4	2016

Most of the engineering disciplines are rooted in Physics. In fact a good engineer is more or less an applied physicist. This course is designed to provide a bridge to the world of technology from the basics of science and to equip the students with skills in scientific inquiry, problem solving, and laboratory techniques.

Syllabus

Harmonic Oscillations: Damped and Forced Harmonic Oscillations. Waves: One Dimensional and Three Dimensional waves, Interference: Interference in thin films (Reflected system) Diffraction: Fraunhofer and Fresnel Diffraction, Grating, Polarization of Light: Double refraction, production and detection of polarized light, Superconductivity: Properties and Applications. Quantum Mechanics: Schrodinger Equations- Formulation and Solution, Operators, Applications. Statistical Mechanics: Microstates and macro states Maxwell - Boltzmann, Bose-Einstein and Fermi Dirac statistics. Fermi level and its significance. Acoustics: Intensity of sound, Reverberation and design concepts, Ultrasonics: Production, Detection and Applications, NDT methods, Lasers: Properties, Working Principles, Practical Lasers. Photonics: Basics of Solid State lighting, Photo detectors, Solar Cells, Fiber Optics.

Expected outcome

Familiarity with the principles of Physics and its significance in engineering systems and technological advances.

References:

- Aruldhas, G., Engineering Physics, PHI Ltd.
- Beiser, A., Concepts of Modern Physics, McGraw Hill India Ltd.
- Bhattacharya and Tandon, Engineering Physics, Oxford India
- Brijlal and Subramanyam, A Text Book of Optics, S. Chand & Co.
- Dominic and Nahari, A Text Book of Engineering Physics, Owl Books Publishers
- Hecht, E., Optics, Pearson Education
- Mehta, N., Applied Physics for Engineers, PHI Ltd
- Palais, J. C., Fiber Optic Communications, Pearson Education
- Pandey, B. K. and Chathurvedi, S., Engineering Physics, Cengage Learning
- Philip, J., A Text Book of Engineering Physics, Educational Publishers
- Premlet, B., Engineering Physics, Mc GrawHill India Ltd
- Sarin, A. and Rewal, A., Engineering Physics, Wiley India Pvt Ltd
- Sears and Zemansky, University Physics, Pearson
- Vasudeva, A. S., A Text Book of Engineering Physics, S. Chand & Co

www.	physics.about.com Course Plan	0	22
Module	APJABContents L KALAM	Hours	Sem Exan Mari
Ι	Harmonic Oscillations: Differential equation of damped harmonic oscillation, forced harmonic oscillation and their solutions- Resonance, Q factor, Sharpness of resonance- LCR circuit as an electrical analogue of Mechanical Oscillator (Qualitative)	5	15%
	Waves: One dimensional wave - differential equation and solution. Three dimensional waves - Differential equation & its solution. (No derivation) Transverse vibrations of a stretched string.	4	8
Π	Interference: Coherence. Interference in thin films and wedge shaped films (Reflected system) Newton's rings-measurement of wavelength and refractive index of liquid Interference filters. Antireflection coating.	5	
	Diffraction Fresnel and Fraunhofer diffraction. Fraunhofer diffraction at a single slit. Plane transmission grating. Grating equation - measurment of wavelength. Rayleigh's criterion for resolution of grating- Resolving power and dispersive power of grating.	4	15
5	FIRST INTERNAL EXAM	1	00
III	Polarization of Light: Types of polarized light. Double refraction. Nicol Prism. Quarter wave plate and half wave plate. Production and detection of circularly and elliptically polarized light. Induced birefringence- Kerr Cell - Polaroid & applications.	4	15
	Superconductivity: Superconducting phenomena. Meissner effect. Type-I and Type-II superconductors. BCS theory (qualitative). High temperature superconductors - Applications of superconductors.	5	15%
IV	Quantum Mechanics: Uncertainty principle and its applications- formulation of Time dependent and Time independent Schrödinger equations- physical meaning of wave function- Energy and momentum Operators-Eigen values and functions- One dimensional infinite square well potential .Quantum mechanical Tunnelling (Qualitative)	6	15
	Statistical Mechanics: Macrostates and Microstates. Phase space. Basic postulates of Maxwell- Boltzmann, Bose-Einstein and Fermi Dirac	3	

	statistics. Distribution equations in the three cases (no derivation). Fermi Level and its significance.		
	SECOND INTERNAL EXAM		1
V	Acoustics: Intensity of sound- Loudness-Absorption coefficient - Reverberation and reverberation time- Significance of reverberation time- Sabine's formula (No derivation) -Factors affecting acoustics of a building.	3	
	Ultrasonics: Production of ultrasonic waves - Magnetostriction effect and Piezoelectric effect - Magnetostriction oscillator and Piezoelectric oscillator - Detection of ultrasonics - Thermal and piezoelectric methods- Applications of ultrasonics - NDT and medical.	4	20%
VI	Laser: Properties of Lasers, absorption, spontaneous and stimulated emissions, Population inversion, Einstein's coefficients, Working principle of laser,Optial resonant cavity. Ruby Laser, Helium-Neon Laser, Semiconductor Laser (qualitative). Applications of laser, holography (Recording and reconstruction)	5	
	Photonics: Basics of solid state lighting - LED – Photodetectors - photo voltaic cell, junction & avalanche photo diodes, photo transistors, thermal detectors, Solar cells- I-V characteristics - Optic fibre-Principle of propagation-numerical aperture-optic communication system (block diagram) - Industrial, medical and technological applications of optical fibre. Fibre optic sensors - Basics of Intensity modulated and phase modulated sensors.	5	20%

Course No.	Course Name	L-T-P-Credits	Year of Introduction
CY100	ENGINEERING CHEMISTRY	3-1-0-4	2016

To enable the students to acquire knowledge in the concepts of chemistry for engineering applications and to familiarize the students with different application oriented topics like new generation engineering materials, storage devices, different instrumental methods etc. And to develop abilities and skills that are relevant to the study and practice of chemistry.

Syllabus

Spectroscopy - Principles and Applications, Electrochemistry - Electrodes, Electrochemical series and applications, Nernst Equation, Potentiometric titration and application, Cells, Instrumental Methods-Thermal Analysis, Chromatography; Conductivity, Chemistry of Engineering Materials, Copolymers, Conducting Polymers, Advanced Polymers, Nano materials, Fuels and Calorific value; Lubricants and their properties, Water Technology - Hardness, Water softening methods, Sewage water Treatment.

Expected outcome

The student will be able to apply the knowledge of chemistry and will be equipped to take up chemistry related topics as part of their project works during higher semester of the course.

References Books:

- Ahad, J., Engineering Chemistry, Jai Publications
- Dara, S. S., Engineering Chemistry, S Chand Publishers
- Fernandez, A., Engineering Chemistry, Owl Book Publishers, ISBN 9788192863382
- Jain and Jain, Engineering Chemistry, Dhanpat Rai Publishers
- Kaurav, Engineering Chemistry with Laboratory Experiments. PHI, ISBN 9788120341746
- Manjooran K. S., Modern Engineering Chemistry, Kannatheri Publication
- Seymour, R. B., Introduction to Polymer Chemistry, McGraw Hill
- Rath, P., Engineering Chemistry, Cengage Learning, ISBN 9788131526699
- Wiley India, Engineering Chemistry, ISBN 9788126543205

	Course Plan		
Module	Contents	Hours	Sem.
	2014		Exam
	2014		Marks
Ι	Spectroscopy: Introduction, Beer Lamberts Law (no derivations)(Numericals)	1	
	UV-visible spectroscopy - Principle, Instrumentation and applications	2	l,
IR spectroscopy - Principle and applications (Numaericals)		2	15%
	['] H NMR spectroscopy - Principle, chemical shift - spin - spin splitting and applications including MRI(brief), Spectral Problems	4	
II	Electrochemistry: Different types of electrodes (general) – SHE, Calomel		15%
	electrode, Glass electrode and determination of E ⁰ using SHE & Calomel	2	1.570

	electrode		
	Electrochemical series and its applications.(Numericals)	1	
	Nernst equation - Derivation, application & numericals	2	
	Potentiometric titration - Acid-base and redox titration	2	
	Lithium ion cell and Fuel cell.	1	
	FIRST INTERNAL EXAM	,J	
III	Instrumental Methods: Thermal analysis - Principle, instrumentation and applications of TGA and DTA.	3	
	Chromatographic methods - Basic principles, column, TLC. Instrumentation and principles of GC and HPLC.	4	15%
	Conductivity - Measurement of conductivity	1	
IV	Chemistry of Engineering Materials: Copolymers - BS, ABS - Structure and Properties.	1	
	Conducting Polymers - Polyaniline, Polypyrrole - Preparation, Structure and Properties.	2	
	OLED – An introduction	1	
	Advanced Polymers – Kevlar, Polybutadiene rubber and silicone rubber: Preparation, Structure and Properties.	2	15%
	Nanomaterials – Definition, Classification, chemical methods of preparation - hydrolysis and reduction	2	
	Properties and Applications – Carbon Nano Tubes and fullerenes.	1	
	SECOND INTERNAL EXAM		
V	Fuels and Lubricants: Fuels - Calorific Value, HCV and LCV - Determination of calorific value of a solid and liquid fuel by Bomb calorimeter - Dulongs formula and Numericals.	3	
	Liquid fuel - Petrol and Diesel - Octane number & Cetane number	1	
	Biodiesel - Natural gas.	2	20%
	Lubricant - Introduction, solid, semisolid and liquid lubricants.	1	
	Properties of lubricants - Viscosity Index, Flash point, Fire point, Cloud point, Pour point and Aniline point.	2	
VI	Water Technology: Types of hardness, Units of hardness, Estimation of Hardness – EDTA method. Numericals based on the above	3	
	Water softening methods - Ion exchange process - Principle. Polymer ion exchange.	2	20%
	Reverse Osmosis - Disinfection method by chlorination and UV	1	
	Dissolved oxygen, BOD and COD.	2	
	Sewage water Treatment - Trickling Filter and UASB process.	1	
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P-Credits	Year of Introduction
BE100	ENGINEERING MECHANICS	3-1-0-4	2016

- 1. To apply the principles of mechanics to practical engineering problems.
- 2. To identify appropriate structural system for studying a given problem and isolate it from its environment.
- 3. To develop simple mathematical model for engineering problems and carry out static analysis.
- 4. To carry out kinematic and kinetic analyses for particles and systems of particles.

Syllabus

Statics: Fundamental concepts and laws of mechanics; Force systems; Principle of moments; Resultant of force and couple systems; Equilibrium of rigid body; Free body diagram; Equilibrium of a rigid body in three dimension; Support reactions; Properties of surfaces and solids - Centroid, Moment of inertia, Polar moment of inertia, Mass moment of inertia, Product of inertia and Principal moment of inertia; Theorems of Pappus – Guldinus; Friction; Principle of virtual work.

Dynamics: Rectangular and cylindrical coordinate system; Combined motion of rotation and translation; Newton's second law in rectilinear translation; D' Alembert's principle; Mechanical vibration; Simple harmonic motion; Spring-mass model.

Expected outcome

- 1. Students will be able to apply and demonstrate the concepts of mechanics to practical engineering problems.
- 2. Students will be able to determine the properties of planes and solids.
- 3. Students will be able to apply fundamental concepts of dynamics to practical problems.

Text Books:

• Shames, I. H., Engineering Mechanics - Statics and Dynamics, Pearson Prentice

-stol

• Timoshenko, S. & Young D. H., Engineering Mechanics, McGraw Hill

References Books:

- Babu, J., Engineering Mechanics, Pearson Prentice Hall
- Beer and Johnson, Vector Mechanics for Engineers Statics and Dynamics, Tata McGraw Hill Publishing Company Limited
- Benjamin J., Engineering Mechanics, Pentex Book Publishers and Distributors
- Bhavikkatti, S. S., Engineering Mechanics, New Age International Publishers
- Hibbeler, R. C., Engineering Mechanics: Statics and Dynamics. Pearson Prentice Hall
- Kumar, K. L., Engineering Mechanics, Tata McGraw Hill Publishing Company Limited
- Merriam J. L. and Kraige L. G., Engineering Mechanics Vol. I and II, John Wiley
- Rajasekaran S. and Sankarasubramanian, G., Engineering Mechanics, Vikas Publishing House Private Limited
- Tayal, A. K., Engineering Mechanics- Statics and Dynamics, Umesh Publications

Module	Contents			
Ι	Statics: Fundamental concepts and laws of mechanics – Rigid body – Principle of transmissibility of forces	2		
	Coplanar force systems - Moment of a force – Principle of moments	2	15%	
	Resultant of force and couple system	4	1070	
	Equilibrium of rigid body – Free body diagram – Conditions of equilibrium in two dimensions – Two force and three force members.	3		
II	Types of supports – Problems involving point loads and uniformly distributed loads only.	5	150/	
	Force systems in space – Degrees of freedom – Free body diagram – Equations of equilibrium – Simple resultant and Equilibrium problems.	4	15%	
2	FIRST INTERNAL EXAM	12 34		
III	Properties of planar surfaces – Centroid and second moment of area (Derivations not required) - Parallel and perpendicular axis theorem – Centroid and Moment of Inertia of composite area.	3		
	Polar Moment of Inertia – Radius of gyration – Mass moment of inertia of cylinder and thin disc (No derivations required).	2	15%	
	Product of inertia – Principal Moment of Inertia (conceptual level).	3		
	Theorems of Pappus and Guldinus.	1		
IV	Friction – Characteristics of dry friction – Problems involving friction of ladder, wedges and connected bodies.	6	150/	
	Definition of work and virtual work – Principle of virtual work for a system of connection bodies – Problems on determinate beams only.	4	15%	
	SECOND INTERNAL EXAM			
V	Dynamics: Rectangular and Cylindrical co-ordinate system	1		
	Combined motion of rotation and translation – Concept of instantaneous centre – Motion of connecting rod of piston and crank of a reciprocating pump.	4	20%	
	Rectilinear translation – Newton's second law – D'Alembert's Principle – Application to connected bodies (Problems on motion of lift only).	4		
VI	Mechanical vibrations – Free and forced vibration - Degree of freedom.	1		
	Simple harmonic motion – Spring-mass model – Period – Stiffness – Frequency – Simple numerical problems of single degree of freedom.	7	20%	

Course No:	Course Name	L-T-P Credits	Year of Introduction				
BE110	*ENGINEERING GRAPHICS	1-1-3-3	2016				
*As this course is	*As this course is practical oriented, the evaluation is different from other lecture based courses.						
Points to note:	Points to note: API ABDUL KALAM						
(1) End seme	ster examination will be for 50 marks and	of 3 hour duration.	AI.				
(2) End seme	ster exam will include all modules except	Module IV.	C C C C				
(3) 100 marks marks(CA	s are allotted for internal evaluation: first D Lab Practice) and class exercises 20 m	internal exam 40 ma arks.	arks, second internal exam 40				
(4) The first practical e end of the	internal exam will be based on modules exam in CAD based on Module IV along semester.	I and II and the sec e. Second internal ex	cond internal exam will be a cam may be conducted at the				
Course Objective	es and a second s	5 A 5	-				
To enable the stud per standards.	lent to effectively communicate basic o	designs through gra	phical representations as				
Syllabus							
Introduction to Er	ngineering Graphics; Orthographic pro	jections of lines and	l solids, Isometric				
projection, Freeha Perspective projective	and sketching, Introduction to CAD, Section.	ections of solids, De	evelopment of surfaces,				
Eurostad autoom	Esto						
Expected outcom		8X	7				
Upon successful completion of this course, the student would have accomplished the following abilities and skills:							
1. Fundamental Engineering Drawing Standards							
2. Dimensioning and preparation of neat drawings and drawing sheets.							
3. Interpretatio	3. Interpretation of engineering drawings						
4. The features	4. The features of CAD software						

References Books:

- Agrawal, B. and Agrawal, C. M., Engineering Drawing, Tata McGraw Hill Publishers
- Anilkumar, K. N., Engineering Graphics, Adhyuth Narayan Publishers
- Benjamin, J., Engineering Graphics, Pentex Publishers
- Bhatt, N., D., Engineering Drawing, Charotar Publishing House Pvt Ltd.
- Duff, J. M. and Ross, W. A., Engineering Design and Visualization, Cengage Learning, 2009
- John, K. C., Engineering Graphics, Prentice Hall India Publishers
- Kirstie Plantenberg, Engineering Graphics Essentials with AutoCAD 2016 Instruction, 4th Ed., **SDC** Publications
- Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K., Engineering Graphics with AutoCAD, PHI 2009
- Luzadder, W. J. and Duff, J. M., Fundamentals of Engineering Drawing, PHI 1993
- Parthasarathy, N. S., and Murali, V., Engineering Drawing, Oxford University Press
- Varghese, P. I., Engineering Graphics, V I P Publishers
- Venugopal, K., Engineering Drawing & Graphics, New Age International Publishers • C

ourse	Plan

Module	Contents	Hours	Sem. Exam Marks
	6 exercises		
	Introduction to Engineering Graphics: Need for engineering	1	
I	drawing.	14	20%
	Drawing instruments; BIS code of practice for general	15	
	engineering drawing.	1	
	Orthographic projections of points and lines:-Projections of		
	points in different quadrants; Projections of straight lines		
	inclined to one of the reference planes, straight lines		
	inclined to both the planes; True length and inclination of		
	lines with reference planes; Traces of lines.		

	12 exercises		
II	Orthographic projections of solids:-Projections of simple solids* in simple positions, projections of solids with axis inclined to one of the reference planes and axis inclined to both the reference planes.	11	20%
	FIRST INTERNAL EXAM	LAN	1
111	 12 exercises Isometric Projections:-Isometric projections and views of plane figures simple* and truncated simple* solids in simple position including sphere and hemisphere and their combinations. Freehand sketching: Freehand sketching of real objects, conversion of pictorial views into orthographic views and vice versa. 	ÇAI 09	20%
IV	6 exercises Introduction to Computer Aided Drafting - familiarizing various coordinate systems and commands used in any standard drafting software - drawing of lines, circle, polygon, arc, ellipse, etc. Creating 2D drawings. Transformations: move, copy, rotate, scale, mirror, offset and array, trim, extend, fillet, chamfer. Dimensioning and text editing. Exercises on basic drafting principles, to create technical drawings. Creation of orthographic views of simple solids from pictorial views. Creation of isometric views of simple solids from orthographic views. Solid modelling and sectioning of solids, extraction of 2D drawings from solid models. (For internal examination only, not for University Examination).	15 (Additional hours are allotted in U slot for CAD practice)	Internal
	SECOND INTERNAL EXAM (to be conducted only after fin	ishing CAD Pra	ctice.)
v	9 exercises Sections and developments of solids: - Sections of simple* solids in simple vertical positions with section plane inclined to one of the reference planes - True shapes of sections. Developments of surfaces of these solids.	12	20%

	6 exercises		
VI	Intersection of surfaces: - Intersection of prism in prism and cylinder in cylinder - axis bisecting at right angles only. Perspective projections: - perspective projections of simple* solids.	09	20%
*Tr cyli	riangular, square, pentagonal and hexagonal prisms, pyramids, c inders.	cones and	1
	END SEMESTER EXAM	Y	

Note:

- 1. First angle projection is to be followed.
- 2. CAD Practice is mandatory and shall be conducted in the time slot allotted for U slot in addition to 15 hours allotted for Module IV

Question Paper Pattern: Question Paper shall contain eight questions of 10 marks each out of which five questions are to be answered as explained below. The duration of examination is 3 hours.

Part A: Three questions from Modules I & II out of which two are to be answered.

Part B: Five questions from Modules III, V & VI out of which three are to be answered.

The questions are to be answered in A4 size booklet containing grid/plain sheets supplied by the university. Drawing sheets are not needed.

The evaluation of answers shall be based on the correctness of solution, judging the knowledge of student in concepts and principles of Engineering Graphics. Accuracy and neatness shall not be criteria for evaluation. 2014

BE101-02							
	INTRODUCTION TO MECHANICAL ENGINEERING SCIENCES	2-1-0-3	2016				
Course Obj	ectives						
1. To in	troduce different disciplines of Mechanical En	gineering	N A				
2. To ki	2. To kindle interest in Mechanical Engineering						
3. To in Syllabus	part basic mechanical engineering principles	VHC.	4				
Thormodumo	miss & Dower sources Thermal Engineering	Defrigeration and	Ain Conditioning				
Automobile	& Aeronautical Engineering, Engineering Mat	erials and manufa	cturing.				
Expected Ou	itcome						
At the end of	the course, the students will have exposed to the	different areas of	Mechanical				
Engineering;	gained idea about nature, scope and applications	of Mechanical En	gineering principles.				
References	Books						
• D	ossat R I Principles of Refrigeration PHI						
• H	evwood, J., Internal Combustion Engine Fund	amentals. McGray	w Hill Publishers				
• H	olman, J. P., Thermodynamics, McGraw Hill (Co.					
• Ja	ain, K. K. and Asthana, R. B., Automobile Eng	ineering, TTTI Bl	nopal				
• Jo	onathan Wickert, Introduction to Mechanical E	ngineering, Cenga	age Learning				
• K N	alpakjian, S. and Schmid, S. R., Manufa Iaterials, Pearson education	cturing Processe	s for Engineering				
• N	laines, R., Landmarks in Mechanical Engineer	ing, ASME					
• P	eng, W. <mark>W., Principles of Turbo</mark> machinery, Jol	nn Wiley & Sons					
• P	ita, E. G., Air Conditioning Principles & Syste	ms, PHI.					
• S	• Spalding, D. B. and Cole, E. H., Engineering Thermodynamics, ELBS & Edward Arnold (Pub) Ltd.						
• S	• Stone, R. and Ball, T. K., Automotive Engineering Fundamentals, SAE International						
• S	utton, G. P. and Ross, D. M., Rocket Propulsio	on Elements, John	Wiley & Sons				
• V H	• Von Karman, T., Aerodynamics: Selected Topics in the Light of Their Historical Development, Courier Corporation						
• C	nline course on Refrigeration & Air condition	ing, IIT Kharagpu	r <u>www.nptel.ac.in</u>				
Module	IoduleContentsIThermodynamics: Nature and scope of thermodynamics; Basic concepts ; Laws of thermodynamics- Discovery, Significance & Applications; Qualitative ideas on Entropy, Available energy, Irreversibility, Principle of increase of entropy & Carnot engine; Limitations of Thermodynamics; Sources of power; history of power production; power production in the future.		Sem. Exam Marks				
--------	---	---	-----------------------				
I			15%				
п	Thermal Engineering: Historical development of steam engine, steam turbines, gas turbinesand hydraulic turbines; Principle of turbomachinery; History of IC engines; two stroke and four stroke engines-working, applications; Air compressors- types and uses; Principles of Rocket propulsion, chemical rockets, Indian space programme	8	15%				
	FIRST INTERNAL EXAM						
Ш	 Refrigeration & Air Conditioning: History & scope of refrigeration; applications of refrigeration; Food preservation, refrigerated storage; applications in chemical and process industries; special applications; Air conditioning- Principles & systems; scope of air conditioning; Psychrometric properties of air; Human comfort; comfort standards. 	7	15%				
IV	Automobile & Aeronautical Engineering: Introduction to an Automobile; history of the automobile; Indian Automobiles; Types of automobiles; Major components and their functions; Manufacturers of motor vehicles in India; Fundamentals of aerodynamics; drag force and lift force; jet engines types and applications.	7	15%				
13	SECOND INTERNAL EXAM		-				
v	Engineering Materials: Introduction and history of materials; Basic crystallography; metals, alloys, composites, ceramics, polymers; mechanical properties and testing of engineering materials.	5	20%				
VI	Manufacturing Engineering :	7	20%				

Methods of manufacturing; casting, forging, rolling, extrusion; machining operations – turning, milling, drilling, grinding, shaping, planing; Joining operations – soldering, brazing & welding; Introduction to CNC machines(elementary idea only); examples of typical products manufactured by above methods.

END SEMESTER EXAM

Question Paper Pattern:

Part A: Modules I and II – three questions of 15 marks each – out of which two questions are to be answered.

Part B: Modules III and IV – three questions of 15 marks each – out of which two questions are to be answered.

Part C: Modules V and VI – three questions of 20 marks each – out of which two questions are to be answered.

Each question can have maximum of four subdivisions (a,b,c,d).

Course No.	Course Name	L-T-P-Credits	Year of Introduction	
BE103	INTRODUCTION TO SUSTAINABLE	2013	2016	
DEIUS	ENGINEERING	2-0-1-3	2010	

- To have an increased awareness among students on issues in areas of sustainability
- To understand the role of engineering and technology within sustainable development;
- To know the methods, tools, and incentives for sustainable product-service system development
- To establish a clear understanding of the role and impact of various aspects of engineering and engineering decisions on environmental, societal, and economic problems.

Syllabus

Sustainability- need and concept, challenges, Environment acts and protocols, Global, Regional and Local environmental issues, Natural resources and their pollution, Carbon credits, Zero waste concept ISO 14000, Life Cycle Analysis, Environmental Impact Assessment studies, Sustainable habitat, Green buildings, green materials, Energy, Conventional and renewable sources, Technology and sustainable development, Sustainable urbanization, Industrial Ecology.

Expected outcome

The student will be

- Able to understand the different types of environmental pollution problems and their sustainable solutions
- Able to work in the area of sustainability for research and education
- Having a broader perspective in thinking for sustainable practices by utilizing the engineering knowledge and principles gained from this course

Reference Books:

- Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning
- Environment Impact Assessment Guidelines, Notification of Government of India, 2006
- Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998
- ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications - GRIHA Rating System
- Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.
- Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book Society (ELBS).

	Course Plan		w	
Module	Contents	Hours	Sem. Exam Marks	
Ι	Sustainability - Introduction, Need and concept of sustainability, Social- environmental and economic sustainability concepts. Sustainable development, Nexus between Technology and Sustainable development, Challenges for Sustainable Development. Multilateral environmental agreements and Protocols - Clean Development Mechanism (CDM), Environmental legislations in India - Water Act, Air Act.		15%	
	 Students may be assigned to do at least one project eg: a) Identifying/assessment of sustainability in your neighbourhood in education, housing, water resources, energy resources, food supplies, land use, environmental protection etc. b) Identify the threats for sustainability in any selected area and explore solutions for the same 	P1		
II	Air Pollution, Effects of Air Pollution; Water pollution- sources, Sustainable wastewater treatment, Solid waste - sources, impacts of solid waste, Zero waste concept, 3 R concept. Global environmental issues- Resource degradation, Climate change, Global warming, Ozone layer depletion, Regional and Local Environmental Issues. Carbon credits and carbon trading, carbon foot print.	L6	15%	
	 Students may be assigned to do at least one project for eg: a) Assessing the pollution status of a small area b) Programmes for enhancing public environmental awareness c) Observe a pond nearby and think about the different measures that can be adopted for its conservation 	Р3	P3	
	FIRST INTERNAL EXAM			
III	Environmental management standards, ISO 14000 series, Life Cycle Analysis (LCA) - Scope and Goal, Bio-mimicking, Environment Impact Assessment (EIA) - Procedures of EIA in India.	L4		
	 Students may be assigned to do at least one project eg: a) Conducting LCA of products (eg. Aluminium cans, PVC bottles, cars etc. or activities (Comparison of land filling and open burning) b) Conducting an EIA study of a small project (eg. Construction of a building) 	P2	15%	

IV	Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green		
	building certification, Methods for increasing energy efficiency of buildings. Sustainable cities, Sustainable transport.		15%
	Students may be assigned to do at least one project eg: a) Consider the design aspects of a sustainable building for your campus		
	b) Explore the different methods that can be adopted for maintaining a sustainable transport system in your city.	. 2	
	SECOND INTERNAL EXAM		
V	Energy sources: Basic concepts-Conventional and non-conventional, solar		
	energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy.	L5	
	Students may be assigned to do at least one project eg:		20%
	a) Find out the energy savings that can be achieved by the installation of a	P2	
	solar water heater		
	b) Conduct a feasibility study for the installation of wind mills in Kerala		
VI	Green Engineering, Sustainable Urbanisation, industrialisation and poverty		
	reduction; Social and technological change, Industrial Processes: Material	L5	
	selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis.		
	Students may be assigned to do a group project eg:		
	a) Conect details for instances of chinate change in your locality b) Find out the carbon credits you can gain by using a sustainable transport		20%
	system (travelling in a cycle or car pooling from college to home)		2070
	c) Have a debate on the topics like: Industrial Ecology is a Boon or Bane for	P3	
	Industries?/Are we scaring the people on Climate Change		
	unnecessarily?/Technology enables Development sustainable or the root		
	cause of unsustainability?		
	END SEMESTED EXAM		

Course No.	Course Name	L-T-P-Credits	Year of Introduction		
CE100	BASICS OF CIVIL ENGINEERING	2-1-0-3	2016		

- 1. To inculcate the essentials of Civil Engineering field to the students of all branches of Engineering.
- 2. To provide the students an illustration of the significance of the Civil Engineering Profession in satisfying societal needs.

Syllabus

General introduction to Civil Engineering - Introduction to types of buildings, Components of a residential building, Introduction to industrial buildings; Introduction to planning of residential buildings - Simple building plans; Introduction to the various building area terms; Setting out of a building; Surveying – Principles, Objectives, Horizontal measurements with tapes, Ranging; Levelling – Instruments, Reduction of levels; Modern surveying instruments; Building materials – Bricks, cement blocks, Cement, Cement mortar, Steel; Building construction – Foundations, Brick masonry, Roofs, Floors, Decorative finishes, Plastering, Paints and Painting; Basic infrastructure and services – Elevators, Escalators, Ramps, Air conditioning, Sound proofing, Towers, Chimneys, Water Tanks; Intelligent buildings.

Expected outcome

- 1. The students will be able to illustrate the fundamental aspects of Civil Engineering.
- 2. The students will be able to plan and set out a building.
- 3. Students will be able to explain the concepts of surveying for making horizontal and vertical measurements.
- 4. They will able to illustrate the uses of various building materials and explain the method of construction of different components of a building.
- 5. Students will be able to discuss about various services in a building.

References Books:

- Chudley, R., Construction Technology, Vol. I to IV, Longman Group, England
- Chudley, R. and Greeno, R., Building Construction Handbook, Addison Wesley, Longman Group, England
- Gopi, S., Basic Civil Engineering, Pearson Publishers
- Kandya, A. A., Elements of Civil Engineering, Charotar Publishing house
- Mamlouk, M. S., and Zaniewski, J. P., Materials for Civil and Construction Engineering, Pearson Publishers

- McKay, W. B. and McKay, J. K., Building Construction Volumes 1 to 4, Pearson India Education Services
- Minu, S., Basic Civil Engineering, Karunya Publications
- Rangwala, S. C., Essentials of Civil Engineering, Charotar Publishing House
- Rangwala, S. C. and Dalal, K. B., Engineering Materials, Charotar Publishing house
- Rangwala, S. C. and Dalal, K. B., Building Construction, Charotar Publishing house

	Course Plan			
Module	Contents	Hours	Sem. Exam Marks	
Ι	General Introduction to Civil Engineering - Various disciplines of Civil engineering, Relevance of Civil engineering in the overall infrastructural development of the country.	2		
	Introduction to types of buildings as per NBC; Selection of site for buildings.	2		
	Components of a residential building and their functions. Introduction to industrial buildings – office / factory / software development office / power house /electronic equipment service centre (any one related to the branch of study)	2	15%	
	Students have to visit one such building and submit an assignment about the features of any one of the listed building related to their branch (Not included for exam).	1		
Π	Building planning - Introduction to planning of residential buildings- Site plan, Orientation of a building, Open space requirements, Position of doors and windows, Size of rooms; Preparation of a scaled sketch of the plan of a single storeyed residential building in a given site plan.	4	15%	
	Introduction to the various building area terms - Computation of plinth area / built up area, Floor area / carpet area - for a simple single storeyed building; Setting out of a building.	3		
	FIRST INTERNAL EXAM			
III	Surveying - Principles and objectives of surveying;	1		
	Horizontal measurements – instruments used – tape, types of tapes; Ranging (direct ranging only) – instruments used for ranging.	3 3 15%		
	Levelling - Definitions, principles, Instruments (brief discussion only) - Level field book - Reduction of levels - problems on levelling (height of collimation only).			
	Modern surveying instruments – Electronic distance meter, digital level, total station, GPS (Brief discussion only).			
IV	Building materials - Bricks, cement blocks - Properties and specifications.	2	15%	

	Cement – OPC, properties, grades; other types of cement and its uses (in	1	
	brief).		
	Cement mortar – constituents, preparation.	1	
	Concrete – PCC and RCC – grades.	1	
	Steel - Use of steel in building construction, types and market forms.	1	
	SECOND INTERNAL EXAM		
V	Building construction – Foundations; Bearing capacity of soil (definition	2	
	only); Functions of foundations, Types - shallow and deep (sketches only).	2	
	Brick masonry – header and stretcher bond, English bonds – Elevation and	2	
	plan (one brick thick walls only).	Z	
	Roofs – functions, types, roofing materials (brief discussion only).	1	20%
	Floors – functions, types; flooring materials (brief discussion only).	1	
	Decorative finishes – Plastering – Purpose, procedure.	1	
	Paints and Painting – Purpose, types, preparation of surfaces for painting	2	
	(brief discussion only).	Z	
VI	Basic infrastructure and services - Elevators, escalators, ramps, air	2	
	conditioning, sound proofing (Civil engineering aspects only)	2	20%
	Towers, Chimneys, Water tanks (brief discussion only).	1	2070
	Concept of intelligent buildings.	2	
	END SEME <mark>ST</mark> ER EXAM		

Course No.	Course Name	L-T-P Credits	Year of Introduction			
EE100	BASICS OF ELECTRICAL ENGINEERING	2-1-0-3	2016			
Course O	bjectives					
To impart a	basic knowledge in Electrical Engineering v	with an understa	anding of fundamental concepts.			
Syllabus	ANJ ADDO		LAIVI			
Elementar Matrix re induction, quantities- power tran	Elementary concepts of electric circuits, Kirchhoff's laws, constant voltage and current sources, Matrix representation; Magnetic circuits, energy stored in magnetic circuits, Electromagnetic induction, Alternating current fundamentals; AC circuits, phasor representation of alternating quantities- rectangular, polar; Three phase systems, star and delta connection; Generation of power, power transmission and distribution; Transformers, Electric Machines, DC Machines, AC Matrix					
Expected	outcome					
The course Engineerir	e will enable the students to gain preliminary ng.	knowledge in	basic concepts of Electrical			
References Books:						
	Bhattacharya, S. K., Basic Electrical & Electrical	ctronics Engine	ering, Pearson			
	Bird, J., Electrical Circuit Theory and Tech	nology, Routled	lge, Taylor & Francis Group			
	•Del Toro,V.,Electrical Engineering Fundam	nentals, Prentice	e Hall of India.			
	Hayt, W. H., Kemmerly, J. E., and Durbi Tata McGraw Hill	n, S. M., Engir	neering Circuit Analysis,			
	Hughes, Electrical and Electronic Technolo	gy, Pearson Ed	ucation			
 Mehta, V.K. and Mehta, R., Basic Electrical Engineering, S. Chand Publishing Parker and Smith, Problems in Electrical Engineering, CBS Publishers and Distributors 						
•Sudhakar and Syam Mohan, Circuits and Networks Analysis and Synthesis, Tata McGraw Hill						
•Suresh Kumar, K. S, Electric Circuits and Networks, Pearson Education						
Course Plan						

Module	Contents 2014	Hours	Sem. Exam. Marks
	Elementary concepts of electric circuits: Kirchhoff's laws, constant voltage and current sources-Problems	2	
Ι	Formation of network equations by mesh current and node voltage methods-matrix representation-solution of network equations by matrix methods-problems	3	15%
	star-delta conversion(resistive networks only-derivation is not needed)-problems	1	

II	Magnetic Circuits: MMF, field strength, flux density, reluctance(definition only)-comparison between electric and magnetic circuitsEnergy stored in magnetic circuits, magnetic circuits with air gap-Numerical problems on series magnetic circuitsElectromagnetic Induction: Faraday's laws, lenz's laws- statically induced and dynamically induced emfs-self inductance and mutual inductance, coefficient of coupling (derivation not needed)	2 2 2 2	15%
	FIRST INTERNAL EXAMINATION	AL	
	Alternating Current fundamentals: Generation of alternating voltages-waveforms, frequency, period, average, RMS values and form factor of periodic waveform(pure sinusoidal)- Numerical Problems	2	
	AC Circuits: Phasor representation of alternating quantities- rectangular and polar representation	1	15%
III	Analysis of simple AC circuits: concept of impedance, power and power factor in ac circuits-active, reactive and apparent power	2	
	solution of RL,RC and RLC series circuits-Numerical problems	2	
	Three phase systems: Generation of three phase voltages- advantages of three phase systems, star and delta connection (balanced only), relation between line and phase voltages, line and phase currents	3	
	three phase power measurement by two wattmeter method (derivation is not required) - Numerical problems	1	
	Generation of power: Block schematic representation of generating stations- hydroelectric power plants	1	
IV	Block schematic representation of Thermal and nuclear power plants	1	
	Renewable energy sources: solar, wind, tidal and geothermal (Block diagram and working only- No Problems)	1	15%
	Power transmission: Typical electrical power transmission scheme-need for high voltage transmission-(Derivation is not needed, No Problems)	1	
	Power Distribution: substation equipments, primary and secondary transmission and distribution systems- feeder, service	1	

	mains			
	SECOND INTERNAL EXAMINATION			
V	Electric Machines: DC Generator and Motor-Construction- working principle- Back EMF	2	_	
	Types of motor-shunt, series, compound (short and long)- principle of operation of dc motor, applications-numerical problems (voltage -current relations only)	A3M `A1	2004	
	Transformer: Construction of single phase and three phase Transformers (core type only)-EMF equation and related numerical problems	2	2076	
	Losses and efficiency of transformer for full load –numerical problems (no equivalent circuit)	2		
VI	AC Motors: Three phase induction motor-squirrel cage and slip ring induction motor	1		
	Working principle-synchronous speed, slip and related numerical problems. (no equivalent circuit)	1	20%	
	AC Motors: Construction, principles of operation of single phase induction motor (no equivalent circuit)	1	2070	
	Starting methods in single phase induction motors -split phase and capacitor start	2		
END SEMESTER EXAMINATION				

Course No:	Course Name	L-T-P Credits	Year of Introduction
EC100	BASICS OF ELECTRONICS ENGINEERING	2-1-0-3	2016
Course O	bjectives		
1) To g	get basic idea about types, specification and com	nmon values	of passive and active

- 2) To familiarize the working of diodes, transistors, MOSFETS and integrated circuits.
- 3) To understand the working of rectifiers, amplifiers and oscillators.
- 4) To get a basic idea about measuring instruments
- 5) To get a fundamental idea of basic communication systems and entertainment electronics

Syllabus

components.

Evolution and Impact of Electronics in industries and in society, Familiarization of Resistors, Capacitors, Inductors, Transformers and Electro mechanical components, PN Junction diode: Structure, Principle of operation, Zener diode, Photo diode, LED, Solar cell, Bipolar Junction Transistors: Structure, Principle of operation, characteristics, Rectifiers and power supplies: Half wave and full wave rectifier, capacitor filter, zener voltage regulator, Amplifiers and Oscillators: common emitter amplifier, feedback, oscillators, RC phase shift oscillator, Analogue Integrated circuits: operational amplifier, inverting and non-inverting amplifier, Electronic Instrumentation: digital multimeter, digital storage oscilloscope, function generator, Radio communication: principle of AM & FM, Super heterodyne receiver, Satellite communication: geo-stationary satellite system, Mobile communication: cellular communications, Optical communication: system, principle of light transmission through fiber, Entertainment Electronics: Cable TV, CCTV system.

Expected Outcome

Student can identify the active and passive electronic components. Student can setup simple circuits using diodes and transistors. Student will get fundamental idea about basic communication systems and entertainment electronics.

Text Books:

- Bell, D. A., Electronic Devices and Circuits, Oxford University Press
- Tomasy, W., Advanced Electronic Communication system, PHI Publishers

References Books:

- Boylested, R. L. and Nashelsky, L., Electronic Devices and Circuit Theory, Pearson Education
- Frenzel, L. E., Principles of Electronic Communication Systems, Mc Graw Hill
- Kennedy, G. and Davis, B., Electronic Communication Systems, Mc Graw Hill

	Rajendra Prasad, Fundamentals of Electronic En	gineering, Cer	ngage Learning
	Course Plan		
Module	Contents	Hours	Sem. Marks
Ι	 Evolution of Electronics, Impact of Electronics in industry and in society. Resistors, Capacitors: types, specifications. Standard values, marking, colour coding. Inductors and Transformers: types, specifications, Principle of working. Electro mechanical components: relays and contactors. 	1 A 3 2 1 1	10%
II	 PN Junction diode: Intrinsic and extrinsic semiconductors, Principle of operation, V-I characteristics, principle of working of Zener diode, Photo diode, LED and Solar cell. Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, input and output characteristics of common emitter configuration (npn only). 	4	20%
	FIRST INTERNAL EXA	M	
	Rectifiers and power supplies: Block diagram description of a dc power supply ,Half wave and full wave (including bridge) rectifier, capacitor filter, working of simple zener voltage regulator.	4	150/
	Amplifiers and Oscillators: Circuit diagram and working of common emitter amplifier, Block diagram of Public Address system, concepts of feedback, working principles of oscillators, circuit diagram & working of RC phase shift oscillator.	4	15%
IV	Analogue Integrated circuits: Functional block diagram of operational amplifier, ideal operational amplifier, inverting and non-inverting Amplifier.	3	15%
	Digital ICs: Logic Gates.	1	
	Electronic Instrumentation: Principle and block diagram of digital multimeter, digital storage	2	

	oscilloscope, and function generator.			
	SECOND INTERNAL EXA	М		
V	Radio communication: principle of AM & FM, frequency bands used for various communication systems, block diagram of super heterodyne receiver. Satellite communication: concept of geo- stationary Satellite system.	3 ALA 112/	M	20%
VI	 Mobile communication: basic principles of cellular communications, concepts of cells, frequency reuse. Optical communication: block diagram of the optical communication system, principle of light transmission through fiber, advantages of optical communication systems. Entertainment Electronics Technology: Basic principles and block diagram of cable TV, CCTV, DTH system. 	2		20%
	END SEMESTER EXAM	1		

2014

Note: Analysis is not required in this course.

Course No.	Course Name	L-T-P-	Year of
		Credits	Introduction
MA102	DIFFERENTIAL EQUATIONS	3-1-0-4	2016

This course introduces basic ideas of differential equations, both ordinary and partial, which are widely used in the modelling and analysis of a wide range of physical phenomena and has got applications across all branches of engineering. The course also introduces Fourier series which is used by engineers to represent and analyse periodic functions in terms of their frequency components.

Syllabus

Homogeneous linear ordinary differential equation, non-homogeneous linear ordinary differential equations, Fourier series, partial differential equation, one dimensional wave equation, one dimensional heat equation.

Expected Outcome

At the end of the course students will have acquired basic knowledge of differential equations and methods of solving them and their use in analysing typical mechanical or electrical systems. The included set of assignments will familiarise the students with the use of software packages for analysing systems modelled by differential equations.

TEXT BOOKS

- Erwin Kreyszig: Advanced Engineering Mathematics, 10th ed. Wiley
- A C Srivastava, P K Srivasthava, Engineering Mathematics Vol 2. PHI Learning Private Limited, New Delhi.

REFERENCES:

• Simmons: Differential Equation with Applications and its historical Notes,2e McGrawHill Education India 2002

Estd.

- Datta, Mathematical Methods for Science and Engineering. CengageLearing, 1st. ed
- B. S. Grewal. Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- N. P. Bali, Manish Goyal. Engineering Mathematics, Lakshmy Publications
- D. W. Jordan, P Smith. Mathematical Techniques, Oxford University Press, 4th Edition.
- C. Henry Edwards, David. E. Penney. Differential Equations and Boundary Value Problems. Computing and Modelling, 3rd ed. Pearson

	COURSE PLAN		
	COURSE NO: MA102	L-T-P:3-1-	•0
	COURSE NAME:		:4
	DIFFERENTIAL		
-	EOUATIONS		
MODULE	CONTENT	HRS	END SEM. EXAM
	API ABDUU KA	AN	MARKS (OUT OF 100)
	HOMOGENEOUS DIFFERENTIAL EQUATIONS		
	(Text Book 1 : Sections 1.7, 2.1, 2.2, 2.6, 3.2)	A	
	Existence and uniqueness of solutions for initial	1 M	
	value problems, Homogenous linear ODEs of second	3	
	order. Homogenous linear ODEs with constant		
т	coefficients, Existence and Uniqueness of solutions		
-	Wronskian,	4	17
	Homogenous linear ODEs with constant	-	
	Coefficients (Higher Order)		
	(For practice and submission as assignment only:		
	Modelling of free oscillations of a mass –		
	spring system)		
	NON-HOMOGENEOUS LINEAR ORDINARY		
	DIFFERENTIAL EQUATIONS		
	(Text Book 2: Sections 1.2.7 to 1.2.14)		
	The particular Integral (P.I.), Working rule for P.I.		
	when $g(x)$ is $X^{\prime\prime\prime}$, To find P.I. when $g(x) = e^{ax} V_1(x)$,	1	
	Working rule for P.I. when $g(x) = x.V(x)$,		17
II	Homogeneous Linear Equations, PI of Homogenous	7	
	equations		
	Legendde's Linead eduations Esto	2	
	Method of variation of parameters for finding PIs	3	
	(For practice and submission as assignments only:		
	Modelling forced oscillations, resonance,		
	electric circuits)	1	
	FIRST INTERNAL EXAM		
	FOURIER SERIES		
	(Text Book 2 - Sections 4.1,4.2,4.3,4.4)		
	Periodic functions ,Orthogonally of Sine and Cosine	2	
	functions (Statement only), Fourier series and	5	
тт	Euler's formulas	•	17
	Fourier cosine series and Fourier sine series	3	
	(Fourier series of even and Odd functions)	-	
	Half range expansions (All results without proof)	3	

	(For practice and submission as assignment only: Plots of partial sums of Fourier series and demonstrations of convergence using plotting software)		
IV	PARTIAL DIFFERENTIAL EQUATIONS (Text Book 2 : Sections : 5.1, 5.1.1, 5.1.2, 5.1.5, 5.2.6-5.2.10) Introduction to partial differential equations , formation of PDE, Solutions of first order PDE(Linear only) Lagrange's Method	LAN IC ³ A Y ₃	17
	Linear PDE with constant coefficients , Solutions of Linear Homogenous PDE with constant coefficients , Shorter method for finding PI when $g(x,y)=f(ax+by)$, Method of finding PI when $g(x,y) = x^m y^n$, method of find PI when $g(x,y)=e^{ax+by} V(x,y)$	6	
	SECOND INTERNAL EXAM		
V	ONE DIMENSIONAL WAVE EQUATION (Text Book 2: Sections :6.1 6.4) Method of separation of variables The wave Equation Vibrations of a stretched string Solutions of one dimensional wave equation using	2 1 1 4	16
VI	method of separation of variables and problems ONE DIMENSIONAL HEAT EQUATION (Text Book 2: sections 6.7, 6.8, 6.9, 6.9.1, 6.9.2) The equation of Heat conduction One dimensional Heat transfer equation. Solutions of One Dimensional Heat transfer equation, A long insulated rod with ends at zero temperatures, A long insulated rod with ends at non zero temperatures	4 1 1 6	16
	END SEMESTER EXAM		

TUTORIALS: Tutorials can be ideally conducted by dividing each class into three groups. Prepare necessary materials from each module that can be practiced using computer software. Use them uniformly in every class.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
BE102	DESIGN AND ENGINEERING	2-0-2-3	2016

The purpose of this course is:-

- 1. To excite the student on creative design and its significance;
- 2. To make the student aware of the processes involved in design;
- 3. To make the student understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design;
- 4. To get an exposure as to how to engineer a design.

Syllabus

Design and its objectives; Role of science, engineering and technology in design; Engineering as a business proposition; Creative design and the Design Process; Design evaluation and communication of designs; Design for function and strength; Material selection and design detailing; Role of standards in design Engineering the design; Design for "X"; Product centered and user centered design; Aesthetics and ergonomics; Concepts of value engineering, concurrent engineering and reverse engineering in design; Culture based design; Modular design; Design optimization needs; User interface; Intelligent and autonomous products; Internet of things; Advanced products and human psychology; Life cycle design; Product and its environment; Design as a marketing tool; Products and IPR; Product liability.

Expected outcome

The student will be:-

- Able to appreciate the different elements involved in good designs and to apply them in practice when called for.
- Aware of the product oriented and user oriented aspects that make the design a success.
- Will be capable to think of innovative designs incorporating different segments of knowledge gained in the course;
- Students will have a broader perspective of design covering function, cost, environmental sensitivity, safety and other factors other than engineering analysis.

References Books:

- Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design [Part 3 Chapters 17 to 27], ISBN-13: 978-0124158917 ISBN-10: 0124158919
- Dym, C. L., Little, P. and Orwin, E. J., Engineering Design A Project based introduction Wiley, ISBN-978-1-118-32458-5
- Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, XI, 489 p. ISBN 978-94-011-3985-4 Springer
- Haik, Y. And Shahin, M. T., Engineering Design Process, Cengage Learning, ISBN-13: 978-0-495-66816-9
- Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic Approach, 3rd ed. 2007, XXI, 617p., ISBN 978-1-84628-319-2
 - Dieter and Schmidt, Engineering Design, McGraw Hill Education(India) Edition 2013

• Voland, G., Engineering by Design, ISBN 978-93-325-3505-3, Pearson India

Web pages:

- 1. E-Book (Free download): http://opim.wharton.upenn.edu/~ulrich/designbook.html
- 2. http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/designforx/design_for_x_notes_s ection_5.pdf

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
Ι	Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and	AL L2	
	Strength Designs. Design form, function and strength;		
	How to initiate creative designs? Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement; Market survey- customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs.	L3	15%
	An Exercise in the process of design initiation. A simple problem is to be taken up to examine different solutions- Ceiling fan? Group Presentation and discussion.	Р4	
II			
	Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design.	L2	
	Design Communication; Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing- Material selection, Design visualisation- Solid modelling; Detailed 2D drawings; Tolerancing; Use of standard items in design; Research needs in design; Energy needs of the design, both in its realization and in the applications.	L3	15%
	An exercise in the detailed design of two products	P4	
	(Stapler/ door/clock)		
	FIRST INTERNAL EXAM	T	
111	Prototyping- rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis.	L2	15%
	Engineering the design – From prototype to product Planning; Scheduling; Supply chains; inventory; handling;	· L3	

manufacturing/construction operations; storage;		
List out the standards organizations. Prepare a list of standard items used in any engineering specialization. Develop any design with over 50% standard items as parts.	P4	
 Design for "X"; covering quality, reliability, safety, manufacturing/construction, assembly, maintenance, logistics, handling; disassembly; recycling; re-engineering etc. List out the design requirements(x) for designing a rocket shell of 3 meter diameter and 8 meter length. 	L4	15%
Design mineral water bottles that could be packed compactly for transportation.	P4	
SECOND INTERNAL EXAM		
Product centred and user centred design. Product centred attributes and user centred attributes. Bringing the two closer. Example: Smart phone. Aesthetics and ergonomics.	L2	
 Value engineering, Concurrent engineering, Reverse engineering in design; Culture based design; Architectural designs; Motifs and cultural background; Tradition and design; Study the evolution of Wet grinders; Printed motifs; Role of colours in design. 	L4	20%
Make sharp corners and change them to smooth curves- check the acceptance. Examine the possibility of value addition for an existing product.	P6	
Modular design; Design optimization; Intelligent and autonomous products; User interfaces; communication between products; autonomous products; internet of things; human psychology and the advanced products. Design as a marketing tool; Intellectual Property rights – Trade secret; patent; copy-right; trademarks; product liability.	L3	20%
Group presentation of any such products covering all aspects that could make or mar it.	P6	
	manufacturing/constructionoperations;storage;packaging; shipping; marketing; feed-back on design.List out the standards organizations.Prepare a list of standard items used in any engineeringspecialization.Develop any design with over 50% standard items asparts.Design for "X"; covering quality, reliability, safety,manufacturing/construction, assembly, maintenance,logistics, handling; disassembly; recycling; re-engineeringetc.List out the design requirements(x) for designing a rocketshell of 3 meter diameter and 8 meter length.Design mineral water bottles that could be packedcompactly for transportation.SECOND INTERNAL EXAMProduct centred and user centred design. Product centredattributes and user centred design. Product centredattributes and user centred design; Architecturaldesign;Value engineering, Concurrent engineering, Reverseengineering in design; Culture based design; Architecturaldesign;Study the evolution of Wet grinders; Printed motifs; Roleof colours in design.Make sharp corners and change them to smooth curves-check the acceptance. Examine the possibility of valueaddition for an existing product.Modular design; Design optimization; Intelligent andautonomous products; uutonomus products; internet ofthings; human psychology and the advanced products.Design as a marketing tool; Intellectual Property rights –Trade secret; patent; copy-right; trademarks; productliability.<	manufacturing/construction operations; storage; packaging; shipping; marketing; feed-back on design. List out the standards organizations. Prepare a list of standard items used in any engineering specialization. P4 Develop any design with over 50% standard items as parts. P4 Design for "X"; covering quality, reliability, safety, manufacturing/construction, assembly, maintenance, logistics, handling; disassembly; recycling; re-engineering etc. L4 List out the design requirements(x) for designing a rocket shell of 3 meter diameter and 8 meter length. P4 Design mineral water bottles that could be packed compactly for transportation. P4 Product centred and user centred design. Product centred attributes and user centred attributes. Bringing the two closer. Example: Smart phone. Aesthetics and ergonomics. L2 Value engineering, Concurrent engineering, Reverse engineering in design; Culture based design; Architectural design; Motifs and cultural background; Tradition and design; L4 Study the evolution of Wet grinders; Printed motifs; Role of colours in design. P6 Modular design; Design optimization; Intelligent and autonomous products; utoromous products; nuternet of things; human psychology and the advanced products. L3 Design as a marketing tool; Intellectual Property rights – Trade secret; patent; copy-right; trademarks; product liability. L3

Evaluation Scheme:

First internal exam – closed book exam – 25 marks

Second internal exam – open book exam – 25 marks

Assignment/projects -50 marks (iv) End semester exam - open book exam -50 marks (2 hours duration - conducted by the University)

First Test: Marks: 25 Closed Book;

Questions may cover:-

Topics covered in the lectures.

How to arrive at the design details for a specific need gap given.

Sketching the design of a product that is to meet the given user requirements.

Second Test: Marks: 25 Open Book:

Students are permitted to bring in class notes, own notes, text books and other books (Maximum 3/4 books) for the test. Access to internet and mobile phones is NOT permitted.

Assignments: Marks: 20 Two assignments are to be given (10 marks each). These assignments are to cover specific design/s, sketching of the design, and a short but well written write-up on the design.

Projects: Marks: 30 Two mini projects are to be assigned. One is to be a group project and the other an individual one. A group of 3 or 4 students can take up the group project. Each project is to be evaluated for 15 marks.

The Group Project is to be done in the practical hours given for the course. Projects including the group projects are to be evaluated based on individual presentations and answers to the questions raised. These presentations could be done during the practical hours.

Question Paper Pattern for End Semester Examination (Open Book)

Part A – Eight questions of each 5 marks, out of which six questions are to be answered.

Part B – Three questions of each 10 marks, out of which two questions are to be answered.

C	ourse No.	Course Name	L-T-P- Credits	Year of Introduction
P	H110	ENGINEERING PHYSICS LAB	0-0-2-1	2016
Coi	ırse Obje	ctives		
Thi	s course is	designed (i) to impart practical knowledge	about some of the	phenomena they
hav	e studied i	in the Engineering Physics course and (ii) to	develop the expension	rimental skills of the
stuc	lents.	TECHNOLO	CIC	A T
		List of Exercises / Experiments (Mini	mum of 8 mandat	tory)
Bas	sics	LINIVER	SITY	
1.	Study of	application of Cathode Ray Oscilloscope (O	CRO) for Frequenc	y and Amplitude
	measurer	nents. Lissajeous figures (useful for different	types of polarized l	ight.)
2.	Tempera	ture measurement – Thermocouple		
3.	Measure	ment of strain using strain gauge and Wheat	stones bridge.	
Wa	ves, Oscil	lations and Ultrasonics		
4.	Wave le	ength and velocity measurement of ultra	asonic waves in	a liquid using
	ultrasoni	c diffractometer.		
5.	The LCF	Circuit – Forced and damped harmonic os	cillations.	
6.	Meldes longitudi	string apparatus. Measurement of free	quency in the t	ransverse and
Inte	erference			
7.	Wave le	ngth measurement of a monochromatic s	source of light us	ing Newton's
0	Rings me	ethod.	lourton's Dings on	anatus
o.	Determin	lation of refractive index of a figure using is	ewton's Kings app	baratus.
9.	Determin wedge m	nation of diameter of a thin wire or thick nethod.	ness of a thin str	ip of paper using air
Dif	fraction			
10.	To determ	mine the slit or pinhole width.		
11.	To measure	ure wavelength using a millimeter scale as a	grating.	
12.	Determin	nation the wavelength of He-Ne laser or any	standard laser using	ng diffraction grating.
13.	To determ	mine the wavelength of monochromatic light	t using grating.	
14	Determin	nation of dispersive power and resolving po	wer of a plane tran	smission grating.

Polarisation

- 15. Kerr Effect To demonstrate the Kerr effect in nitrobenzene solution and to measure the light intensity as a function of voltage across the Kerr cell using photo detector.
- 16. To measure the light intensity of plane polarised light as a function of the analyzer position.
- 17. Laurent's Half Shade Polarimeter -To observe the rotation of the plane of polarization of monochromatic light by sugar solution and hence to determine the concentration of solution of optically active substance.

Laser & Photonics

- 18. To determine the speed of light in air using laser.
- 19. Calculate the numerical aperture and study the losses that occur in optical fiber cable.
- 20. Determination of the particle size of lycopodium powder.
- 21. I-V characteristics of solar cell
- 22. To measure Planck's constant using photo electric cell.
- 23. Measurement of wavelength of laser using grating.

Reference Books:

- Avadhanulu, M. N., Dani, A. A. and Pokley, P. M., Experiments in Engineering Physics, S. Chand & Co.
- Gupta, S. K., Engineering Physics Practicals, Krishna Prakashan Pvt. Ltd.
- Koser, A. A., Practical Engineering Physics, Nakoda Publishers and Printers India Ltd
- Rao, B. S. and Krishna, K. V., Engineering Physics Practicals, Laxmi Publications
- Sasikumar, P. R. Practical Physics, PHI.

Website:

• http://www.indosawedu.com

Course No.	Course Name	L-T-P- Credits	Year of Introduction
CY 110	ENGINEERING CHEMISTRY LAB	0-0-2-1	2016
	List of Exercises / Experiments (Minin	num of 8 manda	tory)
1. Estimat	ion of Total Hardness – EDTA method		litor y y
2 Estimat	ion of Iron in Iron ore	MILT	VIV1
 Estimat Estimat 	ion of Copper in Brass.		A
4. Estimat	ion of dissolved oxygen by Winklers method.	UTV	1 A. A.
5. Estimat	ion of chloride in water.	111	
6. Prepara	tion of Urea formaldehyde and Phenol-formal	dehyde resin.	
7. Determ	ination of Flash point and Fire point of oil by	Pensky Martin A	apparatus.
8. Determ in solut	ination of wavelength of absorption maximution.	m and colorimet	ric estimation of Fe ³
9. Determ	ination of molar absorptivity of a compound o	other than Fe^{3+} .	
10. Analysi	s of IR spectra of any three organic compound	ds.	
11. Analysi	s of ¹ H NMR spectra of any three o <mark>rg</mark> anic co	npounds.	
12. Calibra	tion of pH meter and determination of pH of a	solution.	
13. Verifica	ation of Nernst equation for electrochemical c	ell.	
14. Potentie	ometric titrations: acid – base and redox titration	ons	
15. Conduc	tivity measurements of salt solutions.		
16. Flame p	photometric estimation of Na+ to find out the	salinity in sand.	
Expected or	itcome	1 1	
The student Engineering	will be able to apply and demonstrate the theo Chemistry.	pretical concepts	of
References:			
• Practic	al Engineering Chemistry Lab Manual, Owl book	publishers	

Course No.	Course Name	L-T-P- Credits	Year of Introduction
CE110	CIVIL ENGINEERING WORKSHOP	0-0-2-1	2016
	List of Exercises / Experiments (Minim	um of 8 manda	itory)
	(For Civil Engineering B	ranch)	
Setting out given buildi	of a building: The student should set out a buil ng plan using tape only.	ding (single roo	m only) as per the
Setting out o given buildi	of a building: The student should set out a build ng plan using tape and cross staff.	ling (single roor	n only) as per the
Construct a required) - c	wall of height 50 cm and wall thickness $1\frac{1}{2}$ br corner portion – length of side walls 60 cm.	icks using Engli	sh bond (No mortar
Construct a required) - c	wall of height 50 cm and wall thickness 2 brick corner portion – length of side walls 60 cm.	cs using English	bond (No mortar
Compute the window size in windows measuring in	e area and/or volume of various features of a be e, number of bricks required to construct a wall etc. – To create an awareness of measurements nstruments like vernier caliper, screw gauge etc	uilding/structure of a building, d s and units (use t c.).	e such as door and liameter of bars used tape or other simple
Testing of b construction concrete cub	uilding materials: The student should do the co materials and compare the strength (brick, hol be, stone block, and so on).	ompression testin low block, later	ng of any three ite block, cement
Computation measurement	n of Centre of gravity and Moment of inertia on the second state of the second state o	f a given rolled s	steel section by actual
Introduction	to simple plumbing and sanitary fittings.		
Home assign and submit a boundary wa boom, one b building sho	nment 1: Preparation of a building model - The a building model for a given plinth area in a giv all. The minimum requirements of a residential ed room and a kitchen should be included. The buld also be included in the model.	students in bate ven site plan cor building viz., d concept of an e	ches should prepare istrained by a rawing cum dining nergy efficient
Home assign any one unit Ilustrations	nment 2: Report preparation -The student shou que Civil Engineering structure, prepare and su	ld collect the con bmit a detailed	nstruction details of report with neat
Home assign materials, pr	nment 3: Report preparation - The students sho repare and submit a detailed report including th	uld collect samp eir market rates	bles of building
	(For braches other than Civil H	Engineering)	
Setting out o given buildi	of a building: The student should set out a build ng plan using tape only.	ling (single roor	n only) as per the
Setting out	of a building. The student should set out a build	ling (single root	n only) as per the

given building plan using tape and cross staff.

Building area computation: The student should prepare a rough sketch of a given single storeyed building and by taking linear measurements compute plinth area and carpet area of the given building.

Construct a wall of at least a height of 500mm and wall thickness 1brick using English bond (No mortar required) - corner portion – length of side walls at least 600mm.

Compute the area and/or volume of various features of a building/structure such as door and window size, number of bricks required to construct a wall of a building, diameter of bars used in windows etc. – To create an awareness of measurements and units (use tape or other simple measuring instruments like vernier calipers, screw gauge etc.).

Horizontal measurements: Find the area of an irregular polygon set out on the field. Vertical measurements: Find the level difference between any two points.

Computation of Centre of gravity and Moment of inertia of a given rolled steel section by sketching and measurements.

Home assignment 1: Preparation of a building model - The students in batches should prepare and submit a building model for a given plinth area in a given site plan constrained by a boundary wall. The minimum requirements of a residential building viz., drawing cum dining room, one bed room and a kitchen should be included. The concept of an energy efficient building should also be included in the model.

Home assignment 2: Report preparation - The student should collect the construction details of an industrial building related to their branch of study, prepare and submit a detailed report with neat illustrations.

-ct/

Home assignment 3: Report preparation - The students should collect samples of building materials, prepare and submit a detailed report about their market rates.

Course No.	Course Name	L-T-P- Credits	Year of Introduction
ME110	MECHANICAL ENGINEERING WORKSHOP	0-0-2-1	2016
Course Objec	tives		.I
Introduction to measuring dev	manufacturing processes and applications. Familian ices, practices and machines used in various worksh	rization of vari op sections.	ous tools,
	List of Exercises / Experiments (Minimum of 8	mandatory)	
Sl. Name of Shop floor	No. Exercises	CAL	No of sessions
	Studies of mechanical tools, components and	their applicati	ons:
1 General	(a) Tools: screw drivers, spanners, Allen key	s, cutting plier	s etc.
	(b) Components: Bearings, seals, O-rings, cir	clips, kevs etc.	1
	Any one model from the following:		
2 Carpentry	1. T-Lap joint 2. Cross lap joint 3. Dovetail jo	oint 4. Mortise	joint ²
	(a) Demonstrating the forgability of different Alloy steel and Cast steel) in cold and hot sta	materials (Materials)	S, Al,
	(b) Observing the qualitative differences in the	he hardness of	these
5 Shintiy	(c) Determining the shape and dimensional specimen due to forging under different inspection and measurements	variations of A t states by	Al test visual
4 Foundry	Any one exercise from the following 1. Bench moulding 2. Floor moulding 3. Core	making	2
	Any one exercise from the following		
5 Sheet m	Making 1. Cylindrical 2. Conical 3. Prismatic sheet metal	shaped jobs fi	rom 2
<	Any one exercise from the following		
6 Welding	Making joints using Electric arc welding. Be horizontal, vertical and overhead positions	ad formation i	n 2
- Fitting	Filing exercise and any one of the following e Disassembling and reassembling of 1. Cylind 2. Tail stock assembly 3. Time piece/clock 4.	exercises er piston asser Bicycle or any	nbly 2
Assembly	machine.		

Cou N	urse 0.	Course Name	L-T-P- Credits	Year of Introduction	
EE110		ELECTRICAL ENGINEERING WORKSHOP	0-0-2-1	2016	
Cour	se Obje	ectives			
The c access on exp	bjective sories a perience	e of this course is to familiarize the stud nd measuring equipment in Electrical insta e in setting up of simple wiring circuits. List of Exercises / Experiments (Mini	ents with commo illations. The cour imum of 8 manda	only used components rse also provides hands atory)	
1. 10	dentify o	different types of cables/wires and switches	and their uses.		
2. Ic	dentify of	different types of fuses & fuse carriers, MC	B and ELCB, MC	CB with ratings and	
u 2 u	sage.	C	(DVC)	1.14	
3. V 4 U	viring o	f light/for girouit using Two way switches	n point (PVC con	duit wiring).	
4. V 5 W	Viring O	f fluorescent lamps and light sockets (6. A)	(Staffcase wirnig)		
5. V 6 W	Viring o	f Bower circuit for controlling power device	a (16A sockat)		
0. V 7 G	adown	wiring / Tunnel wiring	e (IOA SOCKEL)		
7. U					
8. V E	Viring o ELCB, N	f power distribution arrangement using sing fain switch and Energy meter.	gle phase MCB dis	stribution board with	
9. N ai	Aeasure nd watti	ment of voltage, current and power in single meter. Calculate the power factor of the circ	e phase circuit usi cuit.	ng voltmeter, ammeter	
10. W ir	Viring o nstallatio	f backup power supply including inverter, bons.	pattery and load fo	or domestic	
11. D	Demonst	ration and measurement of power consump	tion of electric irc	n, mixer grinder,	
si	ingle ph	ase pump, exhaust fan, etc.			
12. E	energy n	neter reading and tariff calculation			
Exne	cted ou	tcome			
1 F	amiliari	ity with supply arrangements and their limit	ations knowledge	of standard	
1. ľ V	oltages	and their tolerances, safety aspects of electr	ical systems and i	mportance of	
p	rotectiv	e measures in wiring systems.	ieur oyotenno und i	mportunite 01	
2. K	Inowled warenes	lge about the types of wires, cables and others so of energy conservation in electrical system	er accessories used ms.	l in wiring. Creating	
3. S b	tudents etween	should be able to wire simple lighting circulight and power circuits.	its for domestic b	uildings, distinguish	
4. T	o measu	ure electrical circuit parameters and current.	, voltage and pow	er in a circuit.	
5 E	amiliari	tu with health norman annulu in domastic in	actallation		

5. Familiarity with backup power supply in domestic installation.

Course	Course Name	L-T-P-	Year of
No.		Credits	Introduction
EC110	ELECTRONICS ENGINEERING WORKSHOP	0-0-2-1	2016

This course gives the basic introduction of electronic hardware systems and provides hands-on training with familiarization, identification, testing, assembling, dismantling, fabrication and repairing such systems by making use of the various tools and instruments available in the Electronics Workshop.

List of Exercises / Experiments (Minimum of 8 mandatory)

- 1. Familiarization/Identification of electronic components with specification (Functionality, type, size, colour coding, package, symbol, cost etc. [Active, Passive, Electrical, Electronic, Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays, Crystals, Displays, Fasteners, Heat sink etc.)
- 2. Drawing of electronic circuit diagrams using BIS/IEEE symbols and introduction to EDA tools, Interpret data sheets of discrete components and IC's, Estimation and costing.
- 3. Familiarization/Application of testing instruments and commonly used tools. [Multimeter, Function generator, Power supply, CRO etc.] [Soldering iron, De-soldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers, Crimping tool, Hot air soldering and de-soldering station etc.]
- 4. Testing of electronic components [Resistor, Capacitor, Diode, Transistor, UJT and JFET using multimeter.]
- 5. Inter-connection methods and soldering practice. [Bread board, Wrapping, Crimping, Soldering types selection of materials and safety precautions, soldering practice in connectors and general purpose PCB, Crimping.]
- 6. Printed circuit boards (PCB) [Types, Single sided, Double sided, PTH, Processing methods, Design and fabrication of a single sided PCB for a simple circuit with manual etching (Ferric chloride) and drilling.]
- 7. Assembling of electronic circuit/system on general purpose PCB, test and show the functioning(Any Four circuits)
 - 1. Fixed voltage power supply with transformer, rectifier diode, capacitor filter, zener/IC regulator.
 - 2. LED blinking circuit using a stable multi-vibrator with transistor BC 107.
 - 3. Square wave generation using IC 555 timer in IC base.
 - 4. Sine wave generation using IC 741 OP-AMP in IC base.
 - 5. RC coupled amplifier with transistor BC 107.
 - 6. AND and NAND gates in diode transistor logic.
- 8. Familiarization of electronic systems (Any three systems)

- 1. Setting up of a PA system with different microphones, loud speakers, mixer etc.
- 2. Assembling and dismantling of desktop computer/laptop/mobile phones.
- 3. Coil/Transformer winding.
- 4. Identify the subsystems of TV, DTH, CCTV, Cable TV, CRO, Function generator etc.
- 5. Screen printing and PCB pattern transfer
- 6. Soldering & de-soldering of SMD using hot air soldering station.
- 7. Introduction to robotics- Familiarization of components (motor, sensors, battery etc.) used in robotics and assembling of simple robotic configurations.

Expected outcome

Student can identify the active and passive electronic components. Student gets hands-on assembling, testing, assembling, dismantling, fabrication and repairing systems by making use of the various tools and instruments available in the Electronics Workshop.

Course N	No. Course Name	L-T-P - Credits	Int	Year of roduction
MA20	LINEAR ALGEBRA AND COMPLEX ANALYSIS	3-1-0-4		2016
Prerequis	ite : Nil			
Course O	bjectives			
COURSE	OBJECTIVES			
• To	equip the students with methods of solving a general s	system of linear equ	ations.	
• To	familiarize them with the concept of Eigen values and	l diagonalization of	a matrix w	which have
ma	ny applications in Engineering.	S110 8		
• To	understand the basic theory of functions of a complex	variable and confo	rmal Trans	sformations.
C II I			Are in	
Syllabus	u of complex functions Complex differentiation (Tou formal monsie	ca Cama	lan
Analyticit	y of complex functions-Complex differentiation-C	conformal mappin	igs-Comp	lex
integration	1-System of linear equations-Eigen value problem	1		
Evnected	loutcome		_	
At the end	of the course students will be able to			
(i) solve an	y given system of linear equations			
(ii) find the	Eigen values of a matrix and how to diagonalize a ma	atrix		
(iii) identif	y analytic functions and Harmonic functions.			
(iv)evaluat	e real definite Integrals as application of Residue Theo	orem		
(v) identify	conformal mappings(vi) find regions that are mapped	l under certain Tran	sformation	IS
Text Bo	ok:			
Erwin Kr	eyszig: Advanced Engineering Mathematics, 10 th ed. V	Viley	_	
1 Dennie a	Ces: Zill & Detrie D. Shanahan A first Course in Complex A	nolucio with Annlic	otions Ion	an & Doutlat
Publishers	Zineratic D Shahanan-A first Course in Complex A	anarysis with Applic	ations-jon	esa Dartiet
2 B S Gre	wal Higher Engineering Mathematics Khanna Publis	hers New Delhi		
3.Lipschutz	z. Linear Algebra, 3e (Schaums Series) McGraw Hill E	Education India 200	5	
4.Complex	variables introduction and applications-second edition	n-Mark.J.Owitz-Car	nbridge Pu	ublication
	Course Plan			
Module	Contents		Hours	Sem. Exam
mouule		1	Hours	Marks
	Limit continuity and derivative of complex function	29	2	
	Emili, continuity and derivative of complex function	15	3	
	Analytic Functions 2014		n	
			2	
Ι	Cauchy–Riemann Equation(Proof of sufficient condi	tion of	2	
	analyticity & C R Equations in polar form not requir	ed)-Laplace's	2	
	Equation			
	Harmonia functions, Harmonia Conjugata		2	
	Harmonic functions, Harmonic Conjugate		-	15%
	Conformal mapping: Text 1[17.1-17.4]			10/0
	Geometry of Analytic functions Conformal Mapping	,	1	
II				
	Mapping $w = z^2$ conformality of $w = e^z$.		2	
	-			15%

	The mapping $w = z + \frac{1}{z}$			
	Properties of $w = \frac{1}{z}$	1		
	Circles and straight lines, extended complex plane, fixed points			
	Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes	3		
	Conformal mapping by $w = \sin z \& w = \cos z$	3		
	functions in Engineering)	/ Ala		
	FIRST INTERNAL EXAMINATION			
	Complex Integration. Text 1[14.1-14.4] [15.4&16.1]			
	Definition Complex Line Integrals, First Evaluation Method, Second	2		
	Evaluation Method Cauchy's Integral Theorem(without proof) Independence of	2		
	path(without proof), Cauchy's Integral Theorem for Multiply	2	15%	
	Connected Domains (without proof)		1570	
III	Cauchy's Integral Formula- Derivatives of Analytic	2		
	Functions(without proof)Application of derivative of Analytical			
	Taylor and Maclaurin series (without proof), Power series as Taylor			
	series, Practical methods(without proof)	2		
	Louront's series (without proof)	2		
	Residue Integration Text 1 [16 2-16 4]	2	15%	
	Singularities, Zeros, Poles, Essential singularity, Zeros of analytic	2	1570	
	functions			
IV	Residue Integration Method, Formulas for Residues, Several singularities inside the contour Residue Theorem.	4		
	Evaluation of Real Integrals (i) Integrals of rational functions of	3		
	$\sin\theta$ and $\cos\theta$ (ii)Integrals of the type $\int f(x)dx$ (Type I, Integrals			
	from 0 to ∞) $20^{-\infty}$			
	(Assignment : Application of Complex integration in Engineering)			
SECOND INTERNAL EXAMINATION				
			20%	
	Linear system of Equations Text 1(7.3-7.5)			
*7	Linear systems of Equations, Coefficient Matrix, Augmented Matrix	1		
V	Gauss Elimination and back substitution, Elementary row operations, Row equivalent systems, Gauss elimination-Three possible cases,	5		
	Row Echelon form and Information from it.	-		

	Linear independence-rank of a matrix	2		
	Vector Space-Dimension-basis-vector space R ³			
	Solution of linear systems, Fundamental theorem of non- homogeneous linear systems(Without proof)-Homogeneous linear systems (Theory only	1		
	Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)		20%	
	Determination of Eigen values and Eigen vectors-Eigen space	3		
VI	Symmetric, Skew Symmetric and Orthogonal matrices –simple properties (without proof)	2		
	Basis of Eigen vectors- Similar matrices Diagonalization of a matrix- Quadratic forms- Principal axis theorem(without proof)	4		
	(Assignment-Some applications of Eigen values(8.2))			
END SEMESTER EXAM				

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

2014

Any two questions from each part have to be answered.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
ME201	MECHANICS OF SOLIDS	3-1-0-4	2016

Prerequisite: nil

Course Objectives:

- 1. To acquaint with the basic concepts of stress and deformation in solids.
- 2. To practice the methodologies to analyse stresses and strains in simple structural members, and to apply the results in simple design problems.

Syllabus

Analysis of deformable bodies : stress, strain, material behaviour, deformation in axially loaded bars, biaxial and triaxial deformation. Torsion of elastic circular members, design of shafts. Axial force, shear force and bending moment in beams. Stresses in beams: flexure and shear stress formulae, design of beams. Deflection of beams. Transformation equations for plane state of stress and strain, principal planes and stresses, Mohr's circle. Compound stresses: combined axial, flexural and shear loads – eccentric loading. Buckling: Euler's theory and Rankine's formula for columns.

Expected outcomes: At the end of the course students will be able to

- 1. Understand basic concepts of stress and strain in solids.
- 2. Determine the stresses in simple structural members such as shafts, beams, columns etc. and apply these results in simple design problems.
- 3. Determine principal planes and stresses, and apply the results to combined loading case.

Text Books:

- 1. Rattan, Strength of Materials, 2e McGraw Hill Education India, 2011
- 2. S.Jose, Sudhi Mary Kurian, Mechanics of Solids, Pentagon, 2015

References Books:

- 1.S. H. Crandal, N. C. Dhal, T. J. Lardner, An introduction to the Mechanics of Solids, McGraw Hill, 1999
- 2. R. C. Hibbeler, Mechanics of Materials, Pearson Education, 2008
- 3. I.H. Shames, J. H. Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, 2006
- 4. James M.Gere, Stephen Timoshenko, Mechanics of Materials, CBS Publishers & Distributors, New Delhi,2012

2014

- 5. F. Beer, E. R. Johnston, J. T. DeWolf, Mechanics of Materials, Tata McGraw Hill, 2011
- 6. A. Pytel, F. L. Singer, Strength of Materials, Harper & Row Publishers, New York, 1998
- 7. E. P. Popov, T. A. Balan, Engineering Mechanics of Solids, Pearson Education, 2012
- 8. R. K. Bansal, Mechanics of solids, Laxmi Publications, 2004
- 9. P. N. Singh, P. K. Jha, Elementary Mechanics of Solids, Wiley Eastern Limited, 2012

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
Ι	Introduction to analysis of deformable bodies – internal forces – method of sections – assumptions and limitations. Stress – stresses due to normal, shear and bearing loads – strength design of simple members. Definition of linear and shear strains.	3 3 3 15%			
	Material behavior – uniaxial tension test – stress-strain diagrams concepts of orthotropy, anisotropy and inelastic behavior – Hooke's law for linearly elastic isotropic material under axial and shear deformation				
	Deformation in axially loaded bars – thermal effects – statically indeterminate problems – principle of superposition - elastic strain energy for uniaxial stress.	4			
	Definition of stress and strain at a point (introduction to stress and strain tensors and its components only) – Poisson's ratio – biaxial and triaxial deformations – Bulk modulus - Relations between elastic	4	1.50/		
11	Torsion: Shafts - torsion theory of elastic circular bars – assumptions and limitations – polar modulus - torsional rigidity – economic cross-sections – statically indeterminate problems – shaft design for torsional load.	4	15%		
	FIRST INTE <mark>R</mark> NAL EXAM				
	Beams- classification - diagrammatic conventions for supports and loading - axial force, shear force and bending moment in a beam	2			
Ш	Shear force and bending moment diagrams by direct approach	3	15%		
m	Differential equations between load, shear force and bending moment. Shear force and bending moment diagrams by summation approach – elastic curve – point of inflection.	5	1.5 / 0		
IV	Stresses in beams: Pure bending – flexure formula for beams assumptions and limitations – section modulus - flexural rigidity - economic sections – beam of uniform strength.	4	15%		
	Shearing stress formula for beams – assumptions and limitations – design for flexure and shear.	4			
	SECOND INTERNAL EXAM				
V	Deflection of beams: Moment-curvature relation – assumptions and limitations - double integration method – Macaulay's method - superposition techniques – moment area method and conjugate beam ideas for simple cases.	6	20%		
	Transformation of stress and strains: Plane state of stress - equations of transformation - principal planes and stresses.	4			
	Mohr's circles of stress – plane state of strain – analogy between stress and strain transformation – strain rosettes	3			
VI	Compound stresses: Combined axial, flexural and shear loads – eccentric loading under tension/compression - combined bending and twisting loads.	4	20%		

Theory of columns: Buckling theory –Euler's formula for long columns – assumptions and limitations – effect of end conditions - slenderness ratio – Rankin's formula for intermediate columns.

END SEMESTER EXAM

Question Paper Pattern

Total marks: 100, Time: 3 hrs The question paper should consist of three parts **Part A**

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Cour: Numb	se Course Name	L-T-P- Credits	Year of I	ntroduction
ME20	00 Fluid mechanics and Machinery	3-1-0-4	2	016
Prerequi	site : Nil			
Course (Dbjectives:			
• To • To • To	o introduce students, the fundamental concepts r o understand the basic principles of fluid machi o apply acquired knowledge on real life problem o analyze existing fluid systems and design new	related to the mec nes and devices. ns. fluid systems.	hanics of	fluids.
Syllabus	INVED	VITV		
Fund hydraulic pumping	amental Concepts, fluid statics and dynamics, fl turbines, positive displacement pumps, rotary n devices.	uid kinematics, b notion of liquids,	oundary la centrifuga	ayer theory, al pump,
Expected	Outcome			
Up on co i. A ii. D iii. U	mpletion of course the students might be in a po nalyze flow problems associated with statics, ki esign and analyze fluid devices such as water tu nderstand and rectify problems faced in practica	sition to: nematics and dyn rbines and pumps Il cases of engines	amics of f s. ering appl	luids. ications.
Text Boo	k:	a cases of engine	<u>8 «pp</u>	
	 Modi P. N. and S. M. Seth, <i>Hydraulics & T</i> New Delhi, 2002. Kumar D. S., <i>Fluid Mechanics and Fluid</i> Sons, New Delhi, 1998. 	Fluid Mechanics, Power Engineerii	S.B.H Pu 1g, S. K. 1	blishers, Kataria &
Referenc	66.			
 1. J. F. Douglas, "Fluid Mechanics", Pearson education. 2. Cengel Y. A. and J. M. Cimbala, Fluid Mechanics, Tata McGraw Hill, 2013 3. Robert W. Fox and Mc Donald, "Introduction to fluid dynamics", John Wiley and sons 4. K. Subrahmanya, "Theory and applications of fluid mechanics", (TMH) 5. Shames. I. H, "Mechanics of fluids". 6. Jagadish Lal, "Fluid mechanics and Hydraulic machines". 7. R K Bansal, "Hydraulic Machines" 				
	Course Plan	9 . 7	-	
Module	Contents	1	Hours	Sem. exam marks
Ι	Fundamental concepts: Properties of fluid - weight, viscosity, surface tension, capillarity, bulk modulus, compressibility, velocity, rate Newton's law of viscosity, Newtonian and fluids, real and ideal fluids, incompressible a fluids.	density, specific vapour pressure, of shear strain, non-Newtonian nd compressible	6	15%

II	Fluid statics: Atmospheric pressure, gauge pressure and absolute pressure. Pascal's Law, measurement of pressure - piezo meter, manometers, pressure gauges, energies in flowing fluid, head - pressure, dynamic, static and total head, forces on planar and curved surfaces immersed in fluids, centre of pressure, buoyancy, equilibrium of floating bodies, metacentre and metacentric height.	10	15%	
III	Fluid kinematics and dynamics: Classification of flow -1D, 2D and 3D flow, steady, unsteady, uniform, non-uniform, rotational, irrotational, laminar and turbulent flow, path line, streak line and stream line. Continuity equation, Euler's equation, Bernoulli's equation. Reynolds experiment, Reynold's number. Hagen- Poiseuille equation, head loss due to friction, friction, Darcy- Weisbach equation, Chezy's formula, compounding pipes, branching of pipes, siphon effect, water hammer transmission of power through pipes (simple problems)	AL 8	15%	
IV	Boundary layer theory: Basic concepts, laminar and turbulent boundary layer, displacement, momentum, energy thickness, drag and lift, separation of boundary layer. Flow rate measurements- venturi and orifice meters, notches and weirs (description only for notches, weirs and meters), practical applications, velocity measurements- Pitot tube and Pitot –static tube.	10	15%	
	Second Internal Exam			
V	Hydraulic turbines : Impact of jets on vanes - flat, curved, stationary and moving vanes - radial flow over vanes. Impulse and Reaction Turbines – Pelton Wheel constructional features - speed ratio, jet ratio & work done , losses and efficiencies, inward and outward flow reaction turbines- Francis turbine constructional features, work done and efficiencies – axial flow turbine (Kaplan) constructional features, work done and efficiencies.	10	20%	
VI	 Positive displacement pumps: reciprocating pump, indicator diagram, air vessels and their purposes, slip, negative slip and work required and efficiency, effect of acceleration and friction on indicator diagram (no derivations), multi cylinder pumps. Rotary motion of liquids: – free, forced and spiral vortex flows, (no derivations), centrifugal pump, working principle, impeller, casings, manometric head, work, efficiency and losses, priming, specific speed, multistage pumps, selection of pumps, pump characteristics. 	10	20%	
End Semester Exam				

Max. marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course No.	Course Name	L-T-P -Credits	Year of Introduction				
AU201	S.I. ENGINES & COMBUSTION	3-1-0-4	2016				
Course Object	tives		I				
To imp	• To impart basic concepts of SI Engine and Combustion, automotive engines						
To know	w constructional details of engine compone	ents.					
To diffe	erentiate ideal and actual cycles						
• To und	lerstand lubrication, cooling, ignition and f	fuel systems in SI engin	es.				
	ADIARDINI	CALANA					
Syllabus I.C Engine cycc cycle - actual combustions - Alternative fue SI engines - C CDI & Coil of Cylinders –cylindiagrams - Co DOHC, variable recovery, Exhal cooling - Lubrit Expected out The students w i. explain ii. identify iii. different	eles and analysis: Otto & diesel cycle, Cor cycle-losses in actual cycle - Combustion Abnormal combustion – Knock theorie els - Air fuel mixture requirements – Solez ombustion System Design- Ignition Syste on plug type of ignition system - Constr inder liners, engine block, types of cylinde omparison of Scavenging Systems - Valv le valve timing systems - Intake system co oust mufflers - Cooling system - types of cation system - types of lubricants – prope come. ill be able to basic concepts of SI Engine and Combusti or engine components and their functions intate ideal and actual cycles and problems	nparison of air standard n in SI engines- P-θ di es - rating of fuels - x Carburettor- Fuel inj em Overview - distribu ructional details of eng r head - Two stroke eng e and valve mechanism mponents - Intake man cooling systems - com rties - lubrication syste	d cycle & fuel air agram- Stages of Octane number, ection systems in tor less ignition - gine components: gines: Port timing m - OHV, OHC, ifold - Waste heat uponents of water ms				
iv. analyse	lubrication, cooling, ignition and fuel systems	ems in SI engines.					
5							
Text Book: 1. M. L. M. 2. R.K. Ra 3. V Gane New De	Mathur, R. P. Sharma - Internal Combustion ajput, Internal Combustion Engines, Laxmi esan, <i>Internal Combustion Engine</i> Tata M elhi 2006.	n Engines, Dhanpat Rai Publications AcGraw Hill Publishin	Publications g Company Ltd.,				
References:		1. 1					
 Heinz H Willian Publish 	Heisler, Advanced Engine Technology, Soc 1 H Crouse / Donald L Anglin, Auton ers	eiety of Automotive Eng	gineers Inc ata McGraw-Hill				
3. I.C.Engi 4. Fuels &	ines By Lichty., McGraw Hill Combustion By Smith & Stinson., McGra	w-Hill					
5. John B Compar	Heywood, Internal Combustion Engine	Fundamentals, McGrav	v Hill Publishing				
6. Obert E	F, Internal Combustion Engine and air Pol	llution McGraw Hill bo	ok company New				

York.

7. Sharma S.P, Fuels and Combustion, Tata McGraw Hill Publishing Company Ltd., New Delhi.

8. A.W. Judge, Modern petrol engine, Chapman and Hall, London

Course Plan				
Module	Contents	Hours	Sem. Exam Marks	
I	I.C Engine cycles and analysis: Otto & Diesel cycle, Comparison of air standard cycle & fuel air cycle, effects of variation of specific heat, dissociation effect, and numerical problems related, actual cycle-losses in actual cycle - Efficiencies of real Engines	9	15%	
Π	 Combustion in SI engines- P-θ diagram- Stages of combustions- Ignition lag. Flame Propagation- factors / engine variables affecting combustion stages. Different combustion chambers in SI engines. Abnormal combustion – Knock theories - detonation effects-factors and variables affecting knock-surface ignition. Fuels – Qualities & properties - rating of fuels - Octane number, Alternative fuels. 	9	15%	
	FIRST INTERNAL EXAMINATION			
III	Air fuel mixture requirements – Solex Carburetor. Stochiometric and excess air calculations. Fuel injection systems in SI engines - nozzle- direct and indirect injections. MPFI systems and GDI engines. Combustion System Design - Port Injection Combustion Systems - Direct Injection Spark ignition (DISI) Introduction - Spark Ignition and Ignition Timing - Ignition System Overview - The Ignition Process - Ignition Timing Selection and Control – Battery & magneto ignition system – distributor less ignition - CDI & Coil on plug type of ignition system	9	15%	
IV	Constructional details of engine components: Cylinders – cylinder liners, engine block, types of cylinder head, gasket materials. Piston - types, materials, piston rings, piston pins, connecting rod, crank shaft, flywheel, cam shaft, valve, valve mechanism, hydraulic tappets. Two stroke engines: Port timing diagrams, Symmetrical & unsymmetrical timing, Three port engine. Theoretical Scavenging processes, Scavenging parameters, Comparison of Scavenging Systems; Cross flow, loop flow, uniflow, Pre blow down, Blow down. Scavenging pumps, blowers.	9	15%	

	Valve and valve mechanism: Angle of seat, Operating Conditions, operating temperatures, valve cooling, Sodium cooled valves, Valve rotators, valve seats, valve guides, , valve springs, valve clearance & timing, OHV, OHC, DOHC, variable valve timing systems – V TECH.VVT. Camshaft,-	12	20%
V	drives of cams, cam types, tappets, push rods, rocker arms Intake system components, Discharge coefficient, Pressure drop, Air filters, Intake manifold, connecting pipe. Exhaust system components: Exhaust manifold and exhaust pipe, Spark arresters, Waste heat recovery, Exhaust mufflers, Type of mufflers.	N	
VI	Cooling system: Necessity of engine cooling, operating temperatures, types of cooling systems: Direct air cooling, Indirect or water cooling, Liquid cooling, Pressure sealed cooling, Evaporative cooling or steam cooling, components of water cooling system, antifreeze solution, temperature gauges. Lubrication system: Functions, lubrication principles, classification of lubricants, types of lubricants, properties of lubricants, service ratings of oils, oil additives, specification of lubricants, crankcase ventilation, lubrication systems, pre- lubrication systems, effect of engine conditions on lubricating oil, consumption of lubricating oil, Components of lubrication system, Oil pressure warning system, oil pressure gauges, chassis lubrication.	12	20%
	FND SEMESTER EXAM		

Total marks: 100, Time: 3 hours The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course co	ode Course Name	L-T-P - Credit	s	Year of Introduction			
AU203	AUTO CHASSIS	3-0-0-3		2016			
Prerequis	Prerequisite: Nil						
Course O	Course Objectives						
• Stu	dy of the Constructional details and	d Theory of importar	nt drive	line, Structural,			
Ste	eering, Braking and Suspension Systems	s of Automobiles.					
• Pr	oblem-Solving ability in Steering Mech	nanism, Propeller Shaft	, Braking	and Suspension			
Sy	stems.	KALA	NA.				
Syllabus			1 1100				
Chassis la	yout – vehicle frames- wheels and rims-	- tyres- drives- drive ax	les- diffe	rential –			
Suspension	a system-braking systems- front and stu	ib axies – steering mech	nanism.				
Expected	fter this course the student must be able	to explain the constru	otional da	tails and the			
	ructure of drive line steering braking s	vstem and suspension s	suctem in	a vehicle			
	ructure of drive line, steering, braking s	system and suspension s	system m				
Text Bo	ok:						
1. Kripal S	ingh, Automobile Engineering, Standard Pu	ublisher, New Delhi , 200	6				
2. R.K. Raj	put, A Text-Book of Automobile Engineer	ing, Laxmi Publications I	Private Lii	nited, 2007 3.			
3.N.K. Gir	, Automotive Mechanics, Kanna Publishers	s, 2007					
Referen	ces: M. Automotive Chaosie, Chilton Co. New	Verla 1000					
2 Newton	Steeds and Garret Motor Vehicles 13th F	dition Butterworth Lond	lon 2005				
3. Heinz H	laisler, Advanced Vehicle Technology, But	terworth, London, 2005.	1011, 2005.				
	Cor	ırse Plan					
Module	Contents		Hours	Sem.ExamMarks			
	Types of Chassis layout, with refere	nce to Power Plant	7				
	location and drive, various types of fran	nes, Loads acting on					
T	vehicle frame, Constructional details	and materials for					
-	frames, Testing of frames. Types and C	constructional Details					
	of different Types of Wheels and Rim	s, different Types of		150/			
	Effect of Driving Thrust torque reaction	ions and side thrust	7	13%			
	Hotchkiss drive torque tube drive	radius rods and	/				
	stabilizers. Propeller Shaft, Universit	al Joints, Constant					
II	Velocity Universal Joints, Front Whee	el drive. Final drive,					
	different types, Double reduction an	d twin speed final					
	drives, Multi–axle vehicles.	A 1 1		15%			
	FIRST INTERNAL	EXAMINATION		•			
	Construction and Design of Drive Ax	cles, Types of Loads	7	15%			
	acting on drive axles, Full – Floating, T	hree–Quarter Floating					
III	and Semi–Floating Axles, Axle H	ousings and Types,					
	Differential principle and types, Differential	ential housings, Non–					
	Slip differential, Differential locks, Fi	nal drive of Crawler,					
	Need for Suspension System Types of	f Suspension Springs	7	15%			
	Constructional details and characteris	stics of Single Leaf.	,	1570			
IV	Multi-Leaf, Coil, Torsion bar, Rubber,	Pneumatic and Hydro					
	– elastic Suspension Spring Sy	stems, Independent					
	Suspension System, Shock Abso	orbers, Types and					

	Constructional details, Design of Leaf Springs.				
SECOND INTERNAL EXAMINATION					
V	Theory of Automobile Braking, Stopping Distance Time and Braking Efficiency, Effect of Weight Transfer during Braking, Theory of Drum Brakes, Leading and Trailing Shoes, Braking Torque, Constructional Details of Drum Brake and its Activators, Disc Brake Theory, Types and Construction, Hydraulic Braking System, Mechanical Braking System, Pneumatic Braking System, Power–Assisted Braking System, Servo Brakes, Retarders, Types and Construction, Anti–Lock Braking	7 AM	20%		
VI	Types of Front Axles and Stub Axles, Front Wheel Geometry, viz., Castor, Camber, King Pin Inclination and Toe-in, Condition for True Rolling Motion of Wheels during Steering, Ackerman's and Davis Steering Mechanisms, Steering Error Curve, Steering Linkages, Different Types of Steering Gears, Slip Angle, Over-Steer and Under-Steer, Reversible and Irreversible Steering, Power-Assisted Steering.	A ⁷ L	20%		
	END GENTEQUED EXAND				

END SEMESTER EXAM

Question Paper Pattern

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Feto

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P - Credits	Year of
			Introduction
HS200	Business Economics	3-0-0-3	2016
Prerequisite:	Nil		

Course Objectives

- To familiarize the prospective engineers with elementary Principles of Economics and Business Economics.
- To acquaint the students with tools and techniques that are useful in their profession in Business Decision Making which will enhance their employability;
- To apply business analysis to the "firm" under different market conditions;
- To apply economic models to examine current economic scenario and evaluate policy options for addressing economic issues
- To gain understanding of some Macroeconomic concepts to improve their ability to understand the business climate;
- To prepare and analyse various business tools like balance sheet, cost benefit analysis and rate of returns at an elementary level

Syllabus

Business Economics - basic concepts, tools and analysis, scarcity and choices, resource allocation, marginal analysis, opportunity costs and production possibility curve. Fundamentals of microeconomics - Demand and Supply Analysis, equilibrium, elasticity, production and production function, cost analysis, break-even analysis and markets. Basics of macroeconomics - the circular flow models, national income analysis, inflation, trade cycles, money and credit, and monetary policy. Business decisions - investment analysis, Capital Budgeting decisions, forecasting techniques and elementary Balance Sheet and taxation, business financing, international investments

Expected outcome.

A student who has undergone this course would be able to

- i. make investment decisions based on capital budgeting methods in alignment with microeconomic and macroeconomic theories.
- ii. able to analyse the profitability of the firm, economy of operation, determination of price under various market situations with good grasp on the effect of trade cycles in business.
- iii. gain knowledge on Monetary theory, measures by RBI in controlling interest rate and emerging concepts like Bit Coin.
- iv. gain knowledge of elementary accounting concepts used for preparing balance sheet and interpretation of balance sheet

Text Books

- 1. Geetika, Piyali Ghosh and Chodhury, Managerial Economics, Tata McGraw Hill, 2015
- 2. Gregory Mankiw, Principles of Macroeconomics, Cengage Learning, 2006.
- 3. M.Kasi Reddy and S.Saraswathi, *Economics and Financial Accounting*. Prentice Hall of India. New Delhi.

References:

- 1. Dornbusch, Fischer and Startz, Macroeconomics, McGraw Hill, 11th edition, 2010.
- 2. Khan M Y, Indian Financial System, Tata McGraw Hill, 7th edition, 2011.
- 3. Samuelson, Managerial Economics, 6th edition, Wiley
- 4. Snyder C and Nicholson W, *Fundamentals of Microeconomics*, Cengage Learning (India), 2010.
- 5. Truett, Managerial Economics: Analysis, Problems, Cases, 8th Edition, Wiley
- 6. Welch, *Economics: Theory and Practice* 7th Edition, Wiley
- 7. Uma Kapila, Indian Economy Since Independence, 26th Edition: A Comprehensive and Critical Analysis of India's Economy, 1947-2015
- 8. C Rangarajan, *Indian Economy, Essays on monetary and finance*, UBS Publishers'Distributors, 1998
- 9. A.Ramachandra Aryasri, *Managerial Economics and Financial Analysis*, Tata McGraw-Hill, New Delhi.
- 10. Dominick Salvatore, *Managerial Economics in Global Economy*, Thomas Western College Publishing, Singapore.
- 11. I.M .Pandey, *Financial Management*, Vikas Publishing House. New Delhi.
- 12. Dominick Salvatore, *Theory and Problems of Micro Economic Theory*. Tata Mac Graw-Hill, New Delhi.
- 13. T.N.Hajela. Money, Banking and Public Finance. Anne Books. New Delhi.
- 14. G.S.Gupta. Macro Economics-Theory and Applications. Tata Mac Graw-Hill, New Delhi.
- 15. Yogesh, Maheswari, Management Economics, PHI learning, NewDelhi, 2012
- 16. Timothy Taylor, Principles of Economics, 3rd edition, TEXTBOOK MEDIA.
- 17. Varshney and Maheshwari. Managerial Economics. Sultan Chand. New Delhi

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
I	Business Economics and its role in managerial decision making- meaning-scope-relevance-economic problems-scarcity Vs choice (2 Hrs)-Basic concepts in economics-scarcity, choice, resource allocation- Trade-off-opportunity cost-marginal analysis- marginal utility theory, Law of diminishing marginal utility -production possibility curve (2 Hrs)	4	15%
П	Basics of Micro Economics I Demand and Supply analysis- equillibrium-elasticity (demand and supply) (3 Hrs.) -Production concepts-average product-marginal product-law of variable proportions- Production function-Cobb Douglas function-problems (3 Hrs.)	6	15%
FIRST INTERNAL EXAMINATION			
III	Basics of Micro Economics II Concept of costs-marginal, average, fixed, variable costs-cost curves-shut down point-long run and short run (3 Hrs.)- Break Even Analysis-Problem-Markets-Perfect Competition, Monopoly and Monopolistic Competition, Oligopoly-Cartel and collusion (3 Hrs.).	6	15%
IV	Basics of Macro Economics - Circular flow of income-two sector and multi-sector models- National Income Concepts-Measurement methods-problems-Inflation, deflation (4 Hrs.)-Trade cycles-Money- stock and flow concept-Quantity theory of money-Fischer's Equation and Cambridge Equation -velocity of circulation of money-credit control methods-SLR, CRR, Open Market Operations-Repo and Reverse Repo rate-emerging concepts in money-bit coin (4 Hrs.).	8	15%

SECOND INTERNAL EXAMINATION				
	Business Decisions I-Investment analysis-Capital Budgeting-NPV,		20%	
V	IRR, Profitability Index, ARR, Payback Period (5 Hrs.)- Business			
v	decisions under certainty-uncertainty-selection of alternatives-risk	9		
	and sensitivity- cost benefit analysis-resource management (4 Hrs.).	-		
	Business Decisions II Balance sheet preparation-principles and		20%	
	interpretation-forecasting techniques (7 Hrs.)-business financing-			
VI	sources of capital- Capital and money markets-international	9		
	financing-FDI, FPI, FII-Basic Principles of taxation-direct tax,			
	indirect tax-GST (2 hrs.).	A.		
	END SEMESTED EVAM	V.I		

END SEMESTER EXAM

Question Paper Pattern

Max. marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
HS210	LIFE SKILLS	2-0-2	2016
	× 743		

Prerequisite : Nil Course Objectives

- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

Syllabus

Communication Skill: Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.

Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats, Mind Mapping & Analytical Thinking.

Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

Ethics, Moral & Professional Values: Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

Leadership Skills: Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

Expected outcome

The students will be able to

- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.

Resource Book:

Life Skills for Engineers, Complied by ICT Academy of Kerala, McGraw Hill Education (India) Private Ltd., 2016

References:

- Barun K. Mitra; (2011), "Personality Development & Soft Skills", First Edition; Oxford Publishers.
- Kalyana; (2015) "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd.
- Larry James (2016); "The First Book of Life Skills"; First Edition; Embassy Books.
- Shalini Verma (2014); "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); "The 5 Levels of Leadership", Centre Street, A division of Hachette Book Group Inc.

Course Plan					
		Hou	rs	Sem.	
Module	Contents		L-T-P		
		L	Р	Marks	
	Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures, Listening as an active skill; Types of Listeners; Listening for general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing effective listening skills; Barriers to effective listening skills.	2	2		
Ι	 Technical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application: Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports. Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language 	3	4	See evaluation scheme	
	Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software.		4		

	Need for Creativity in the 21 st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity	2		
II	Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence.		2	
	Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections.	2		
	Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application problems.		2	
	Introduction to Groups and Teams, Team Composition,			
	Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations.	3		
III	Group Problem Solving, Achieving Group Consensus. Group Dynamics techniques, Group vs Team, Team		2	
	Dynamics, Teams for enhancing productivity, Building & Managing Successful Virtual Teams. Managing Team Performance & Managing Conflict in Teams.	3		
	Working Together in Teams, Team Decision-Making, Team Culture & Power, Team Leader Development.	1	2	
	Morals, Values and Ethics, Integrity, Work Ethic, Service Learning, Civic Virtue, Respect for Others, Living Peacefully.	3		
	Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character		2	
IV	Spirituality, Senses of 'Engineering Ethics', variety of moral issued, Types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about	3		
	right action, Self-interest, customs and religion, application of ethical theories.			
	Engineering as experimentation, engineers as responsible experimenters, Codes of ethics, Balanced outlook on.	3		
	The challenger case study, Multinational corporations, Environmental ethics, computer ethics,		2	

	Weapons development, engineers as managers, consulting			
	engineers, engineers as expert witnesses and advisors, moral			
	leadership, sample code of Ethics like ASME, ASCE, IEEE,	2		
	Institution of Engineers(India), Indian Institute of Materials	3		
	Management, Institution of electronics and telecommunication			
	Introduction a fromowork for considering loadership	4		
	antrepreneurial and moral leadership vision people selection	4		
	and development cultural dimensions of leadership style	A		
	followers crises	1.1		
	Growing as a leader, turnaround leadership, gaining control.	1.1		
	trust, managing diverse stakeholders, crisis management		2	
V	CINIV L'NOPI I			
	Implications of national culture and multicultural leadership	2		
	Types of Leadership, Leadership Traits.			
	Leadership Styles, VUCA Leadership, DART Leadership,			
	Transactional vs Transformational Leaders, Leadership Grid,		2	
	Effective Leaders, making of a Leader, Formulate Leadership			
	END SEMESTER EXAM			

EVALUATION SCHEME

Internal Evaluation

(Conducted by the College)

Total Marks: 100

Part – A

(To be started after completion of Module 1 and to be completed by 30th working day of the semester)

1. Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills	-	10 marks
(ii)	Subject Clarity	_ *	10 marks
(iii)	Group Dynamics	-	10 marks
(iv)	Behaviors & Mannerisms	5 -	10 marks

(Marks: 40)

Course No	Course Nome	L-T-P-	Year of
Course No.	Course Name	Credits	Introduction
ME230	FLUID MECHANICS AND MACHINES LABORATORY	0-0-3-1	2016
Prerequisite: ME2	03 Mechanics of fluids		
Course Objectives	The main objectives of this course is to den	onstrate the ap	plications of theories
of basic fluid me	chanics and hydraulic machines and to provi	de a more in	tuitive and physical
understanding of the	theory.	TIC.	4
Syllabus		1.7	L.Au+
Study:		Y	
1. Study of flow m	easuring equipments - water meters, venturi n	neter, orifice m	eter, current meter,
rotameter			
2. Study of gauges	- pressure gauge, vacuum gauge, manometers	•	
3. Study of valves	- stop valve, gate valve and foot valve.		
4. Study of pumps	– Centrifugal, Reciprocating, Rotary, Jet.		
5. Study of Turbing	es - Impulse and reaction types.		
6. Study of Hydrau	lic ram, accumulator etc.		
List of Experiment	S:	NT . 1	
1. Determination of	of coefficient of discharge and calibration of	Notches	
2. Determination (of coefficient of discharge and calibration of C	Drifice meter	
3. Determination (of coefficient of discharge and calibration of	enturimeter.	
4. Determination of	of Chezy's constant and Darcy's coefficient of	i pipe friction a	apparatus
5. Determination (of motocontria bright and redius of symptical of	flaating hadia	
6. Determination (budroulie rom	noating bothe	S.
7. Experiments on 8. Downolds owner	imont		
0 Bernoulli's exper	eriment		
10 Experiment on 7	Forque converter		
11 Performance tes	st on positive displacement numps		
12 Performance tes	st on centrifugal numps determination of oper	ating point and	efficiency
13 Performance tes	st on gear numn	ating point and	remeiency
14 Performance tes	st on Impulse turbines		
15 Performance tes	st on reaction turbines (Francis and Kaplan Tu	rbines)	
16. Speed variation	test on Impulse turbine	romes)	
17. Determination	of best guide vane opening for Reaction turbin	ne	
18. Impact of jet	g		
Note: 12 experim	nents are mandatory		
Expected outco	ome: At the end of the course the students wi	ll be able to	
1. Discuss phys	ical basis of Bernoulli's equation, and apply	it in flow mea	surement (orifice,
Nozzle and V	/enturi meter), and to a variety of problems		
2. Determine th turbines.	e efficiency and plot the characteristic curve	s of different t	types of pumps and

Course No.	Course Name	L-T-P-Credits	Year of Introduction		
CE230	MATERIAL TESTING LAB	0-0-3-1	2016		
Course Objectives	:				
1. To provide kno	wledge on mechanical behaviour of materi	als			
2. To acquaint wit	h the experimental methods to determine th	e mechanical proper	ties of materials.		
Syllabus	A DI A DI VIII E	ZATAN	A.		
List of experiment	am addul i	ALAN	1		
1 Tension tes	t on mild steel / tor-steel / high strength stee	and cast iron using	Universal Testing		
1. Tension tes Machine ar	ad extensometers	and cast non using	Oniversal resting		
2 Tests on sn	rings (Open and closed coiled)	T+V/			
3 Torsion per	ndulum (mild steel aluminium and brass w	ires)			
4. Hardness te	est (Brinell, Vickers and Rockwell)	nes)			
5. Impact test	(Izod and Charpy)				
6. Torsion tes	t on mild steel rods.				
7. Shear test o	on mild steel rods.				
8. Fatigue tes	t – Study of testing machine.				
9. Bending te	st on wooden beams.				
10. Strut test (C	Column buckling experiment)				
11. Verification	n of Clerk Maxwell's law of reciprocal defle	ection and determina	tion of Young's modulus		
of steel.			-		
12. Photo elast	ic methods for stress measurements.				
13. Jominy har	denability test				
14. Measurem	ent using strain gauges				
15. Determinat	tion of moment of inertia of rotating bodies				
Note: A minimum of	f 10 experiments are mandatory.				
Expected outcome	• At the end of the course the students will	be able to			
1 A equire the l	nowledge on mechanical behaviour of mat	orials			
1. Acquire the knowledge on mechanical behaviour of materials					
2. Conduct experiments determine the mechanical properties of materials.					
References Books :		4. 19			
1. G E Dieter.	. Mechanical Metallurgy, McGraw Hill,201	3			
2. Dally J W,	Railey W P, Experimental Stress analysis,	McGarw Hill,1991			
3. Baldev Raj	, Jayakumar T, Thavasimuthu M., Practical	Non destructive test	ing, Narosa Book		
Distributor	s 2015				

Course N	Io. Course Name	L-T-P - Credits		Year of
			Int	roduction
MA202	2 Probability distributions ,	3-1-0-4		2016
	Transforms and Numerical Methods			
Prerequis	ite: Nil			
Course O	bjectives			
• To	introduce the concept of random variables, probab	oility distributions, s	specific	discrete
and	l continuous distributions with practical application	n in various Engine	ering a	nd social
life	situations.	ALANA		
• To	know Laplace and Fourier transforms which has v	vide application in a	all Engi	ineering
COL	irses.	A N		
• To	enable the students to solve various engineering	problems using nun	nerical	methods.
Syllabus	LINEW/ED CT	TV		
Discrete rat	ndom variables and Discrete Probability Distribution	n.		
Continuous	Random variables and Continuous Probability Dist	ribution.		
Fourier tra	nsforms.			
Laplace T	ansforms.			
Numerical	methods-solution of Algebraic and transcendental	Equations, Interpo	lation.	
Numerica	l solution of system of Equations. Numerical	Integration, Num	erical	solution of
ordinary d	ifferential equation of First order.			
.			_	
Expected	l outcome .			
After the	completion of the course student is expected to ha	ave concept of	1	
(1) Discre	te and continuous probability density functions and	d special probabilit	y aistri	butions.
(ii) Lapia	the and Fourier transforms and apply them in their	engineering branch	n	
(111) 110111	encal methods and their applications in solving El	ignieering problem	5.	
Toxt Boo				
1 Mi	ller and Freund's "Probability and statistics for Fn	gineers"-Pearson-F	ighth F	dition
2 Fm	vin Kreyszig "Advanced Engineering Mathematic	s" 10 th edition Wi	lev 20	15
2. 1.1	vin Ricyszig, Travancea Engineering Mathematic		icy, 20	15.
Reference	es:			
1. V.	Sundarapandian, "Probability, Statistics and Oueu	ing theory", PHI Le	earning	2009.
2. C.	Ray Wylie and Louis C. Barrett, "Advanced Engineeri	ng Mathematics"-Six	th Editi	on.
3. Jay	L. Devore, "Probability and Statistics for Engineering	and Science"-Eight H	Edition.	
4. Ste	ven C. Chapra and Raymond P. Canale, "Numeric	al Methods for Eng	ineers"	'-Sixth
Ed	ition-Mc Graw Hill.			
	2014	1		
	Course Plan	1		
Module	Contents	H	lours	Sem. Exam Marks
	Discrete Probability Distributions. (Relevant to	pics in		
	section 4.1,4,2,4.4,4.6 Text1)			
	Discrete Random Variables, Probability distributi	on function,	2	
_	Cumulative distribution function.			
1	Mean and Variance of Discrete Probability Distri	bution.	2	
	Binomial Distribution-Mean and variance.		2	
	Poisson Approximation to the Binomial Distribut	ion. Poisson	2	
	distribution-Mean and variance.			150/
				13%

	Continuous Probability Distributions. (Relevant topics in		
	section 51525557 Text1)		
п	Continuous Random Variable Probability density function	2	
	Cumulative density function. Mean and variance	2	
	Normal Distribution, Mean and variance.	1	
	Normal Distribution, Mean and Variance (without proof).	4	
	Uniform Distribution.Mean and variance.	2	
	Exponential Distribution, Mean and variance.	2	
	11		1.50/
	FIDST INTEDNAL EVAMINATION	A.	15%
	FIRST INTERNAL EXAMINATION	V1	150/
	11.7 11.9 11.0 Tout?)	1	1 J 70
		2	
Ш	Fourier Integrals. Fourier integral theorem (without proof).	- 3	
	Fourier Transform and inverse transform.	3	
	Fourier Sine & Cosine Transform, inverse transform.	3	
			15%
	Laplace transforms. (Relevant topics in section		
	6.1,6.2,6.3,6.5,6.6 Text2)		
	Laplace Transforms, linearity, first shifting Theorem.	3	
	Transform of derivative and Integral, Inverse Laplace	4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
IV	transform, Solution of ordinary differential equation using		
	Laplace transform.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Unit step function second shifting theorem	2	
	e int step runetion, second similing theorem.	_	
	Convolution Theorem (without proof)	2	
	Differentiation and Integration of transforms.	2	
	SECOND INTERNAL EXAMINATION		•
	Numerical Techniques.(Relevant topics in		20%
	section.19.1,19.2,19.3 Text2)		
	Solution Of equations by Iteration, Newton-Raphson Method.	2	
• •			
v	Interpolation of Unequal intervals-Lagrange's Interpolation	2	
	formula.		
	Interpolation of Equal intervals-Newton's forward difference	3	
	formula Newton's Backward difference formula	5	
	formala, newton 5 Dackward americate formala.		
	Numerical Techniques. (Relevant topics in section		20%
	19.5,20.1,20.3, 21.1 Text2)		
	Solution to linear System- Gauss Elimination, Gauss Seidal	3	
VI	Iteration Method.		
	Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule.	3	
	Numerical solution of firstorder ODE-Euler method.	3	
	Runge-Kutta Method (fourth order)		
	FND SFMFSTED EVAM		I
1	LIND SEIVIESIEN EAAIVI		

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.

	. Course maine	L-I-F - Creatts	Year of Introduction
AU202	ADVANCED THERMODYNAMICS	3-1-0-4	2016
Prerequisit	e : Nil		<u> </u>
Course Ob	jectives		
• To i	mpart knowledge to the students thermodynamic c	oncepts and differe	ent power cycles.
• To r	nake the students to solve numerical problems ba	sed on laws of the	rmodynamics and
diffe	erent power cycles.	ALAM	
Syllabus	TECHNOLOG	A A	
Concepts of	thermodynamic systems, Thermometry, first law of	of thermodynamics,	first law for open
and closed	systems, second law of thermodynamics, concept of pure stations. Thermodynamic relations Properties of pure st	of entropy, Availab	non a second
Expected	outcome	ubstances, Different	power cycles.
After comp	eting this course the students will be able to		
i expl	ain thermodynamic concepts and different power of	eveles	
ii. solv	e numerical problems based on laws of thermodyn	amics and different	power cycles.
Text Book			
1 P K Nag,	Engineering Thermodynamics, Tata McGraw Hill	Publishing Compa	ny
Ltd. New D	elhi 2008.	0 1	
2. Thermal	Engineering by R.K.Rajput, Laxmi publications L	td.	
Data Bool	x (Approved for use in the examination):		
Reference	s:		
1 71		A Courselle Marke	1 A D -1
1. Iner	moaynamics an Engineering Approach by Yunus	A Cengel& Michae	el A Boles
2. Engl	ineering Thermodynamics by R.K. Rajput.	A 11' XX 1	
3. J.F.	Lee and FW Sears, Engineering Thermodynamics	, Addison-Wesleg	Publishing
Con	ipany, London, 1962.		
4. M. A	A.chuthan, Engineering Thermodynamics, Prentice	Hall of India Priva	te Ltd,
5. New	⁷ Delhi 2002. Esto		
6. J.P.	Holman, <i>Thermodynamics</i> , McGraw Hill book cor	npany New York, 1	1988.
7. Mar	k W. Zemansky, <i>Heat and Thermodynamic,</i> McGr	<mark>aw Hill, Ne</mark> w Delh	i, 2001.
8. Roy	T, Basic Engineering Thermodynamics, Tata McC	<mark>Graw Hill</mark> Publishin	g Company Ltd.
New	7 Delhi 1989.		
9. The	mal Engineering by Mahesh M Rathore	1	
	Course Plan		
Module	Contents	Hours	Sem.ExamMarks
1	Fundamentals concepts-scope and limitation	ons of 8	
t	hermodynamics. Thermodynamic systems– c	lifferent	
I I	ypes of systems – macroscopic and microscopic	analysis	
- r	- continuum – Properties state – pro-	e of an	
	deal gas –Real gas relations		15%
י י	Laws of thermodynamics- Zeroth law of thermody	vnamics 9	1.5 /0
II -	- Thermal equilibrium – Concept of temperature	ature –	
	Thermometry – Temperature scales. Work and hear	t – First	15%

	law of thermodynamics- Concept of energy - First law for			
	closed and open systems – Specific heats – internal			
	energy and enthalpy – Steady flow energy equations -			
	Joule Thompson effect.			
	FIRST INTERNAL EXAMINATION			
	Second law of thermodynamics- Various statements and	9	15%	
	their equivalence_ Reversible process and reversible			
	cycles- Carnot cycles- Corollaries of the second law.			
III	Clausius inequality- Concept of entropy – Calculation of	1.1.		
	change in entropy in various thermodynamic processes –	1V1		
	Reversibility and irreversibility – Available and	2K T		
	unavailable energy – Third law of thermodynamics.	A		
	Thermodynamic relations – Combined first and second law	8	15%	
IV	equations – Hemholtz and Gibbs functions – Maxwell			
	relations- Equations for specific heats, internal energy,			
	enthalpy and entropy – Clausius-Clapeyron equations -			
	applications of thermodynamic relations.			
	SECOND INTERNAL EXAMINATION			
	Properties of pure substances – PVT, PT and TS diagrams,	11	20%	
	Compressibility factor – Law of corresponding states,			
V	Mollier diagrams- Mixture of gases and vapours- mixture			
•	of ideal gases – Dalton's law – Gibbs law- Thermodynamic			
	properties of mixtures-Numerical problems using steam			
	tables.			
	Different power cycles- Brayton cycle, reversed Brayton	11	20%	
VI	cycle, Lenoir cycle, Stirling cycle, Atkinson cycle, Rankine			
	cycle- Numerical problems based on power cycles.			
	END SEMESTER EXAM			

Total marks: 100, Time: 3 hours The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

2014

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course No.	Course Name	L-T-P - Credits	Year of Introduction					
AU204	CI ENGINES &	4-0-0-4	2016					
	COMBUSTION							
Course Obje	ectives							
• To impart the basic concepts of CI Engine and Combustion								
• To kr	• To know about CI engine emissions and their treatments,							
To differentiate ideal and actual cycles								
• To ur	derstand FI systems in CI engines	KALAA	A					
Syllabus								
Diesel fuels,	Properties and qualities - Combustion	in CI engines, P- θ di	agram - Air motion-					
Bosch num	Modem distributor type pumps Dies	al filters Advanced f	pump types - C-AV					
Unit pump	& injector- Common Rail (CR) Fuel I	niection Systems - Set	nsors in CI engine -					
Pollutants in	engines, NOx, CO, unburned hydroc	arbons - Exhaust gas	treatment Catalytic					
converter – S	Supercharging - effects of supercharging	g in S.I and C.I engine	s - Turbo charging -					
methods of tu	urbo charging - cold starting devices		0.0					
Expected o	utcome.							
The stud	ents will be able to							
i. To ex	plain CI Engine and Combustion,	1						
11. 10 d1	ferentiate and analyse ideal and actual c	ycles						
111. TO di	agnose FI systems in CI engines							
Text Book:								
1. M. L.	Mathur, R. P. Sharma - Internal Combus	stion Engines, Dhanpatl	Rai Publications					
2. R.K.	Raiput, Internal Combustion Engines, La	xmi Publications.						
3. V Ga	nesan, Internal Combustion Engine Ta	ta McGraw Hill Publis	shing Company Ltd.					
New	Delhi 2006		,g company zoa,					
References								
1. Newt	on K, Steeds W and Garrett T.K – Motor	Vehicle, Butterworth H	leinemann Ltd					
2. Willia Publi	am H Crouse, Donald L Anglin, Automo shers	tive Mechanics , Tata N	IcGraw-Hill					
3. Josep	h Heitner- Automobile mechanics, CBS	Publishers, New Delhi						
4. A.W.	Judge, Mo <mark>dern petrol e</mark> ngine, Chapman a	and Hall, London						
5. P. M.	Heldt – High speed diesel engines, Chill	on Co. New York.						
6. Taylo	r, I.C.Engines, MIT Press, England							
7. Licht	y, I.C.Engines, McGraw Hill Publishing	g Co.						
8. Smith	& Stinson, Fuels & Combustion, McG	aw-Hill Publishing Co.						
9. John	B Heywood, Internal Combustion Engl	ine Fundamentals. Mc	Graw Hill Publishing					
Com	anv		shaw thin t donishing					
10 Obert	E E Internal Combustion Engine and air	Pollution McGraw Hil	l book company New					
Vork	E I, internal Combustion Englie and an		TOOK company New					
11 Show	na S.D. Fuels and Combustion. Tota M	Grow Hill Dublishing	Company Ltd Now					
	na 5.1, Fuels and Combustion, 18th M	Colaw IIII Publishilig	Company Ltu., new					
	Haislan Advanced Engine Technologies	Society of Automation	Engineers Inc					
12. Heinz	heisier, Auvanceu Engine Technology,	society of Automotive	Engineers inc					

	Course Plan		
Module	Contents	Hours	Sem.ExamMarks
	Diesel fuels, Properties and qualities, Cetane number, alternative fuels for CI engines		
I	Combustion in CI engines, P- θ diagram – parameters affecting Ignition delay, uncontrolled combustion, diesel knock - controlling methods. Diesel knock, comparison with SI knock and control.	N.A	
	Air motion- Squish, tumble, swirl motions. Different types combustion chambers in CI engines.	9	15%
п	 Fuel supply system in diesel engines: Requirements of diesel injection system, Components of diesel injection system, Diesel filters, fuel feed pump, hand pump, heavy duty air filters, Diesel injection pump types - simple and multiple unit pump, C-AV Bosch pump, Modem distributor type pumps, 	8	
	injection nozzles and types of injectors, Pump-Line-Injector (PLI) Systems		15%
	FIRST INTERNAL EXAMINATION		
III	Electronic Unit Injectors (EUI) – Advanced fuel injection system- Unit pump & injector- Common Rail (CR) Fuel Injection Systems - Electronic Diesel Control (EDC) - overview & Diagnostics. Sensors in CI engine fuel injection systems – control of fuel	8	15%
	Thermodynamics of combustion. Combustion reaction of common fuels. Exhaust gas composition. Testing of IC engines - Indicated power - Brake Power - Volumetric efficiency - Heat balance test - Morse test.	1	15%
IV	Gas Exchange Processes - Valve Flow and Volumetric Efficiency - Valve Timing - Dynamic Behavior of Valve Gear.	9	
	gaseous fuel – combustion equations – problems SECOND INTERNAL EXAMINATION		
	Pollutants in engines NOv CO unburned hydrogerhous		20%
v	smoke and particulate. Sources, causes and measurement of exhaust emission, Non exhaust emissions and control methods, Emission norms	11	
	Exhaust gas treatment Catalytic converter – Thermal reaction -Particulate trap. Flue gas analysis. Air fuel ratio from exhaust gas composition. Numerical problems		
VI	Supercharging: Introduction, Objectives of supercharging, thermodynamic cycle, effects of supercharging in S.I and C.I	11	20%

engines, per supercharging superchargers	rformance of the limits, and met	supercharged hods of superc	engine, charging,	
Turbo chargin advantages, lin (mechanical, p starting device	g - methods of turbo mitations of turbo cha oneumatic and hydrau es.	charging and its rging. Governors lic governors), col	ld	
17.				

END SEMESTER EXAM

Question Paper Pattern

Total marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

-510

Course N	Io. Course Name	L-T-P - Credits		Year of
A 11206		3003		
	biostives	5-0-0- 5		2010
	impart basic knowledge in automotive transm	vission		
• 10 • To	understand the construction and principle of	f operation of varia	ue tun	as of machanical
● 10 tra	nsmission components hydrodynamic devi	ces bydrostatic d	us type levices	and automatic
tra	nsmission system	ees, nyurostatie e	ic vices	and automatic
• To	design clutch and gearbox	LATA	N.A.	
Syllabus	design clutch and gearbox.	NALA	VI	
Problems	on performance of automobile -Determinati	on of gear ratios	for ve	hicles. Different
types of g	earboxes -Fluid coupling-Hydrodynamic Torc	que converter -Con	structio	on and operation
of Ford -	- T-model gearbox, Wilson Gear box and	l electromagnetic	transm	ission-Need for
automatic	transmission, Principle of operation -Hydros	static drive -Electri	c drive	e-Comparison of
hydrostati	c drive with hydrodynamic drive-Ward Leonar	rd Control system		1
Expected	l outcome.			
After this	s course, students will be able to explain about	the design of clutc	hes an	d gear boxes,
construct	ion of the transmission components, various ty	ypes of transmissio	n syste	ms
Text Boo	ok:			
1. 3. Newt	on and Steeds – "Motor Vehicle"- Illiffee Pub	lisher- 2000.		
Reference	ces:			
1. Design	Practices, passenger Car Automotive Transmi	ssions- SAE Hand	book- i	1994.
2. Crouse	, W.H., Anglin, D.L., Automotive Transn	nission and Powe	r Trai	ns construction,
McGraw I	Hill, 1992.			
3 Heldt	P M Torque converters Chilton Book Co. 19	997		
4 Judge	A W Modern Transmission systems Chapma	n and Hall I td 19	90	
5 Using L	Leisler Modern Vehicle Technology	in and man Etd., 19	<i>)</i> 0.	
5 HEIIIZ I	leisier, widdeni veincle rechnology			
	Course Di	0.10	-	
N 1 1	Course PI		-	C EM.
Module	Contents	L L	lours	Sem.ExamMarks
	Problems on performance of automobile	e - such as	0	
т	resistance to motion, tractive erior, engine s	speed, engine		
1	power and acceleration. Requirement of			
	Construction and torque capacity	s, principie,		150/
	Determination of gear ratios for vehicles D	ifferent types	7	13%
	of gearboxes such as Sliding mesh gearb	ox Constant	/	
II	mash georbox and Sunghromash georbox	ox, Collstant		
	meshopisms in each	gear sinting		150/
		MINATION		15%
	FIRST INTERNAL EAA			1.50/
III	Construction and operation of Ford – 1-mode	el gearbox,	6	15%
	Wilson Gear box and electromagnetic transm	ilssion.		150/
	Fiuld coupling - Principle of operation, Const details Torque consists. Defermine a	tructional	7	15%
TX 7	Deduction of dreast organ. Hydrodynamic Ter	teristics and	/	
1 V	Principle of operation Constructional detail	que converter		
	- rinciple of operation, Constructional detail	is allu		
	renormance characteristics. Multistage torqu	ie converters.		

	Polyphase torque converters. Converter coupling		
	SECOND INTERNAL EXAMINATION		
	Need for automatic transmission, Principle of operation.	8	20%
X 7	Hydraulic control system for automatic transmission.		
v	Chevrolet "Turboglide" Transmission, Continuously		
	Variable Transmission (CVT) – Types – Operations.		
	Hydrostatic drive - Various types of hydrostatic systems,	8	20%
	Principles of Hydrostatic drive system. Advantages and		
	limitations. Comparison of hydrostatic drive with hydrodynamic	A. A. 5	
VI	drive, Construction and Working of typical Janny hydrostatic	AIVI	
	drive. Electric drive - Principle of operation of Early and	100	
	Modified Ward Leonard Control system, Advantages &	A	
	limitations.		
	END SEMESTED EVAM		

Total marks: 100, Time: 3 hours The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course co	ode Course Name	L-T-P - Credits		Year of		
AU208	COMPUTER PROGRAMMING	3-0-0-3		2016		
Prerequisite : Nil						
Course O	bjectives					
• To	impart knowledge in programming using C	language				
• To	give an overview of the use of C program in	Automotive indust	ry			
Syllabus	APIARINI	KALA	NA.			
Microcont	troller modules in Automobile- C in A	Automotive industr	ry; Int	roduction to C		
programm	ing- Data types – keywords – operators	s; Arrays- Matrix	operati	on – Structure;		
Functions	– Recursion – Macros; Pointers – Memory a	allocation – storage	class; l	Files– transfer of		
data in blo	ocks; Introduction to MATLAB; Steps for sof	tware development	; MISR	A C standard.		
Expecte	d outcome.		1			
After this	s course students will be able to do simple pro	ograms in C languag	ge and			
Tamiliar	with the interface.					
1 Davier	DK:					
1. Dryon .	S.Gouined, Programming with C Language.		_			
1 Ra	laguruswamy Programming in ANSI C					
2. B.	W. Kernigham & Dennis M Ritchie, C programm	iing language.				
3. De	itel, How to Program C	0 0 0				
	Course I	Plan				
Module	Contents		Hours	Sem.ExamMarks		
	Microcontroller modules in Automobile; M	Aicrocontroller	7			
	programming – high level language, asser	mbly language				
Ι	and machine language; Compiler, as	ssembler and				
	interpreter; Integrated development envir	conment; Chip				
	burning; Use of C in Automotive industry.			15%		
	Introduction to C programming - Data typ	es; Keywords,	7			
	Constants and Variables; Escape Sequence	s; Various I/O				
II	functions; Header files; Type casting; Vari	ious operators;				
	Precedence of operators; Branching statem	ents; Looping				
	statements; Nested loops; break and continu	e instructions.		15%		
	FIRST INTERNAL EXA	AMINATION				
	Arrays; One dimensional arrays; Selection	sorting; Binary	7	15%		
	searching; Various string handlin	ig functions;				
111	Multidimensional Arrays; Matrix Operati	ions (Addition,				
	Transpose and Multiplication) Sorting of St and Union: Arrow of Structures	rings; Structure				
	Eurotions: Call by value and call by ref	arongo mathod:	7	150/		
	Passing One Dimensional and Multidimens	sional Arrays to	7	1.3 70		
IV	a Function: Matrix operations using function	ons. Recursion.				
1,	Factorial and Fibonacci series using t	ecursive calls:				
	Macros: Pre-processor directives: Scope of	variables.				
	SECOND INTERNAL EX	XAMINATION		1		
	Pointers: Pointer to an array: Pointer to a s	structure: Arrav	7	20%		
V	of pointers; Pointer to a pointer; Dyr	namic memory	-			
	allocation; Reallocation of memory; S	elf Referential				

	structure; Stack and heap; Storage class.			
VI	Files; Reading, Writing, Appending and rewriting of text and binary files; Transfer of data in blocks, Moving of file pointer in a file; Introduction to MATLAB; Steps for software development; MISRA C standard.	7	20%	
END SEMESTER EXAM				

Total marks: 100, Time: 3 hours The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
HS210	LIFE SKILLS	2-0-2	2016
	× 743		

Prerequisite : Nil Course Objectives

- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

Syllabus

Communication Skill: Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.

Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats, Mind Mapping & Analytical Thinking.

Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

Ethics, Moral & Professional Values: Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

Leadership Skills: Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

Expected outcome

The students will be able to

- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.

Resource Book:

Life Skills for Engineers, Complied by ICT Academy of Kerala, McGraw Hill Education (India) Private Ltd., 2016

References:

- Barun K. Mitra; (2011), "Personality Development & Soft Skills", First Edition; Oxford Publishers.
- Kalyana; (2015) "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd.
- Larry James (2016); "The First Book of Life Skills"; First Edition; Embassy Books.
- Shalini Verma (2014); "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); "The 5 Levels of Leadership", Centre Street, A division of Hachette Book Group Inc.

	Course Plan			
		Hou	rs	Sem.
Module	Contents		L-T-P	
		L	Р	Marks
	Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures, Listening as an active skill; Types of Listeners; Listening for general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing effective listening skills; Barriers to effective listening skills.	2	2	
Ι	 Technical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application: Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports. Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language 	3	4	See evaluation scheme
	Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software.		4	

	Need for Creativity in the 21 st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity	2		
	Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence.		2	
II	Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections.	2		
	Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application problems.		2	
	Introduction to Groups and Teams, Team Composition,			
	Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations.	3		
III	Group Problem Solving, Achieving Group Consensus. Group Dynamics techniques, Group vs Team, Team		2	
	Dynamics, Teams for enhancing productivity, Building & Managing Successful Virtual Teams. Managing Team Performance & Managing Conflict in Teams.	3		
	Working Together in Teams, Team Decision-Making, Team Culture & Power, Team Leader Development.	1	2	
	Morals, Values and Ethics, Integrity, Work Ethic, Service Learning, Civic Virtue, Respect for Others, Living Peacefully.	3		
	Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character		2	
IV	Spirituality, Senses of 'Engineering Ethics', variety of moral issued, Types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about	3		
	right action, Self-interest, customs and religion, application of ethical theories.			
	Engineering as experimentation, engineers as responsible experimenters, Codes of ethics, Balanced outlook on.	3		
	The challenger case study, Multinational corporations, Environmental ethics, computer ethics,		2	

	Weapons development, engineers as managers, consulting			
	engineers, engineers as expert witnesses and advisors, moral			
	leadership, sample code of Ethics like ASME, ASCE, IEEE,	2		
	Institution of Engineers(India), Indian Institute of Materials	3		
	Management, Institution of electronics and telecommunication			
	Introduction a fromowork for considering loadership	4		
	antrepreneurial and moral leadership vision people selection	4		
	and development cultural dimensions of leadership style	A		
	followers crises	1.1		
	Growing as a leader, turnaround leadership, gaining control.	1.1		
T 7	trust, managing diverse stakeholders, crisis management		2	
V	CINIV L'NOPI I			
	Implications of national culture and multicultural leadership	2		
	Types of Leadership, Leadership Traits.			
	Leadership Styles, VUCA Leadership, DART Leadership,			
	Transactional vs Transformational Leaders, Leadership Grid,		2	
	Effective Leaders, making of a Leader, Formulate Leadership			
	END SEMESTER EXAM			

EVALUATION SCHEME

Internal Evaluation

(Conducted by the College)

Total Marks: 100

Part – A

(To be started after completion of Module 1 and to be completed by 30th working day of the semester)

1. Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills	-	10 marks
(ii)	Subject Clarity	- 1	10 marks
(iii)	Group Dynamics	-	10 marks
(iv)	Behaviors & Mannerisms	s -	10 marks

(Marks: 40)

Part – B

(To be started from 31^{st} working day and to be completed before 60^{th} working day of the semester)

2. Presentation Skills – Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation is as follows;

10 marks

- (i) Communication Skills* 10 marks
 (ii) Platform Skills** 10 marks
- (iii) Subject Clarity/Vnowledge
- (iii) Subject Clarity/Knowledge

(Marks: 30)

(Marks: 30)

Time: 2 hrs.

* Language fluency, auditability, voice modulation, rate of speech, listening, summarizes key learnings etc.

** Postures/Gestures, Smiles/Expressions, Movements, usage of floor area etc.

Part – C

(To be conducted before the termination of semester)

3. Sample Letter writing or report writing following the guidelines and procedures. Parameters to be used for evaluation is as follows;

(i)	Usage of English & Grammar	-	10 marks	
(ii)	Following the format		10 marks	
(iii)	Content clarity		10 marks	

External Evaluation (Conducted by the University)

Total Marks: 50

Short Answer questions

Part – A

There will be one question from each area (five questions in total). Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows;

- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

Part – B

Case Study

The students will be given a case study with questions at the end the students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows;

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion
- (ix) Answer the question at the end of the case

Course code	Course Name	L-T-P - Credits	Year of Introduction
AU232	COMPUTER PROGRAMMINGLAB	0-0-3-1	2016
Prerequisite:	AU208 Computer programming		
Course Objec	tives		
To prov	vide experience in programming with C lang	uage	
• To give	e exposure to computer softwares like MATI	LAB.	
• To do j and file	programming in C covering control structure	es functions, arrays, st	ructures, pointers
List of Exerci	ses/Experiments :	A	
	LECTINGEO	STIC/ IL	
1. Checki	ng leap year	Y	
2. Finding	g sum of digits and reverse of a number		
3. Genera	ting Prime numbers, Fibonacci numbers and	Armstrong numbers	
4. Sine an	d Cosine series generation		
5. Countil 6. Linear	search		
7 Sorting	of numbers and strings		
8. Matrix	addition transpose and multiplication		
9. Progra	ns using structure and union		
10. Progra	ns using functions		
11. Program	ns using recursive calls		
12. Program	ns using macros		
13. Prograi	ns using pointers		
14. Matrix	operation using pointers		
15. Implem	nentation of dynamic memory allocation		
16. Probler	ns related to file reading, writing and append	ling	
17. Transfe	er of data in blocks		
18. Familia	arization of MATLAB tool boxes		
Expected out	tcome.		
After this cou	urse students will be able to do simple progr	<mark>ams in C</mark> language an	d will be familiar
with the inter	face		

Text Book: Bryon S. Gottfried, *Programming with C Language*.
Course code	Course Name	L-T-P - Credits	Year of
			Introduction
AU234	VEHICLE SYSTEMS LAB	0-0-3-1	2016
Prerequisite :	Nil		
Course Object	ives		
To study	about hand tools, special purpose tools, and t	heir uses.	
To famil	iarize with various systems and components o	f an automobile.	
To know	w about writing technical specifications an	d description of all typ	es of chassis and
transmis	sion components of automobiles, including b	ody and interiors	
List of Exercis	es/Experiments (Minimum 12 exercises/	experiments are mand	latory)
1. Servic	cing of clutch assembly, checking the sprin	ig tension of coil spring	s in spring tester.
2. Disma	antling of gear box, inspecting components	s, servicing, checking th	e gear ratios.
3. Disma axis ra	antling of differential assembly, servicing atio.	g, backlash adjustments	, check for drive
4. Servic	cing of A. C. mechanical fuel pump and tes	sting the pump.	
5. Servic	cing of Carburetor, Study Various Circuits	on it, tuning of carbure	tor.
6. Servic	ing master and wheel cylinders in hydraul	ic brake system & bleed	ling of brakes.
7. Valve	timing setting including valve clearance a	djustment.	0
8. Servic	ing of steering gear box, checking for end	play in shafts.	
9. Overh	auling of a complete strut type suspension	system.	
10. Disma	antle and assemble C.V joint. Also examin	e a slip joint, U.J cross	in propeller shaft.
11. Comp	ression test of petrol and diesel engine.		1 1
12. Disas	sembling cylinder head, decarbonizing, Va	lve Seat Grinding	
13. Disass	sembling of engine: inspection of engine	e components, servicing	g of components,
measu	rement of dimensions of different compo	onents of engine, comp	are with standard
specif	ications, piston ring setting, assembling us	sing special tools.	
14. Rectif	ying the troubles in ignition system, adj	usting spark plug and	C. B. Point gap,
check	ing ignition timing.		011
15. Cylind	der reconditioning: Checking the cylinder	bore, setting the tool, re	-boring operation
using	vertical or portable cylinder reboring mach	hine.	
16. Tyre	removing, inspection, check for cuts, but	lges and excessive trea	d wear, resetting
using	pneumatic tyre changer & Wheel balancir	ng: Balancing of wheels	by computerized
wheel	balancing machine.		
17. Whee	el alignment: Checking the camber, caster	, king pin inclination, t	oe in and toe out
with c	computerized wheel alignment machine.		
18. F. I. I	P Calibration and phasing: Setting the ar	ngle of fuel delivery, c	alibration of fuel
quanti	ity by FIP calibrating machine.		
19. Brake	drum r <mark>e-conditionin</mark> g: Bra <mark>ke drum</mark> ski	mming after leveling	machine, ovality
measu	rement and setting the tool.		
20. Testin	ng of Two wheeled vehicles on chassis dyn	amometer	
Expected out	come.		
After this cours	the student will be able to		
i. handle a	any maintenance issue in a vehicle		
ii. identify	the troubles of the vehicles from the symp	otoms shown.	
Text Book:			
1. Boyce I	Dwiggins – Automobile Repair guide, The	odor Audel and Co., Inc	liana – 1978.
2. A. W. J	udge – Maintenance of high speed diesel e	ngine, Chapmann Hall	Ltd.
3. A. W. J	Judge – Motor vehicle engine servicing 3	^{3¹⁰ edition, Pitman pape}	er mark, London,
1969.			

4. Vehicle service manuals and reputed manufacturers.

Cours	e Course Name	L-T-P –	Yea	r of
	7 MACHINE DESIGN I			
MESU	7 MACHINE DESIGN - I	3-1-0-4	20.	10
Prerequ	isite : Nil			
Course	Objectives			
•]	To understand the basic components and layout of linkage	ges in the	assembly	v of a
S	ystem/machine.			
Syllabu		T A A	D .	1
Introduc	tion to design of riveted, threaded, and welded joints – sprin	gs and desig	n –Desig	gn laws
- stresse	s in components and machines.	C A I		
Expect	ed outcome.	forman atura	a a a ffa a	4
•	here students will become aware of the machine components,	forces, stres	ses affec	ung
L Toxt B	eoks:	Y		
	2 I Norton Kinematics and Dynamics of Machinery 1	st ed Tata	McGra	w Hill
1. I F	Education Private Limited Delhi 2004	st cu., Tata	WieGra	vv 11111
2. 5	S. S. Rattan Theory of Machines, 3rd ed., Tata McGraw Hill	Education P	rivate L	imited.
I	Delhi, 2009			
Refere	nces:			
1. J	. E. Shigley, J. J. Uicker, Theory of Machines and Mech	nanisms, Oxt	ford Uni	versity
I	Press, 2016			
2.	A. Ghosh, A. K. Malik, Theory of Mechanisms and Mach	hines, Affilia	ated Eas	t West
I	Press, 3e, 2006			
3. (C. E. Wilson, P. Sadler, Kinematics and Dynamics of Mach	ninery, 3rd e	dition, F	Pearson
H	Education, 2003			
4. I	Holowenko, Dynamics of Machinery, John Wiley & Sons, 19	995		
	Course Plan			
			12	End
Modulo	Contonta		Hours	Sem.
Wiouule	Contents		Hours	Exam
	Estd			Marks
	Classification of mechanisms – Basic kinematic co	ncepts and		
	definitions – Degree of freedom, Mobility – Kutzbac	h criterion,		
-	Gruebler's criterion – Grashof's Law –Kinematic inversio	ons of four-	10	4 50/
I	bar chain, slider crank chains and double slider crank cha	uns – Limit	10	15%
	positions – Mechanical advantage – Transmission Angl	uick roturn		
	mechanisms Straight line generators	ulek letuili		
	Displacement valority and acceleration analysis	of simple		
	mechanisms – Graphical method Velocity and acceleration	on polygons		
п	Force analysis of machinery - static and dynamic force	analysis of	10	15%
11	plane motion mechanisms - graphical method - n	rinciple of	10	1570
	superposition –matrix methods - method of virtual work.	interpre of		
	FIRST INTERNAL EXAMINATION		1	
	Governors: - terminology and classification : Watt Po	orter. Proel		
Ш	Hartnell. Hartung, quality of governors.inertia governors	s- governor	8	15%
	speed control	0		/0
	Gyroscope: - Principle-Angular acceleration-Effect of	gyroscopic		

	couple airplanes, and ships, stability of automobile and two wheel vehicles, Rigid disc at an angle fixed to a rotating shaft			
IV	Turning moment diagram and Flywheel: - coefficient of fluctuation of energy and speed- energy saved in a flywheel- force analysis, piston effort-crankpin effort- crank effort-turning moment diagrams for I.C. engines.	8	15%	
	SECOND INTERNAL EXAMINATION			
V	Cams and Followers: - types-follower motion-SHM-uniform velocity and acceleration- Cycloidal - displacement, velocity and acceleration curves-Cam profile-Reciprocating and oscillating followers-Tangent cams-Convex and concave cams with footed followers. Introduction to Polynomial cams. (Numerical problems)	10	20%	
VI	Law of toothed gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology and definitions –Gear tooth action – contact ratio – Interference and undercutting Gear trains – Speed ratio, train value – Parallel axis gear trains– Epicyclic Gear Trains (Numerical problems)	10	20%	
END SEMESTER EXAM				

QUESTION PAPER PATTERN

Maximum Marks :100

Exam Duration: 3 Hours

PART A

4 Questions uniformly covering modules 1 and 2. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART B

4 Questions uniformly covering modules 3 and 4. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

Estd.

PART C

6 Questions uniformly covering modules 5 and 6. Each question carries 10 marks. Students will have to answer any four questions out of six. (4X10=40 marks)

Note: Each question can have maximum of 4 sub questions (a, b, c, d)

Course code	Course Name	L-T-P- Credits	Year of Introduction			
ME309	METALLURGY AND MATERIALS SCIENCE	3-0-0-3	2016			
Prerequisite	: Nil					
Course Obje	ectives:					
 Course Objectives: To provide physical concepts of atomic radius, atomic structure, chemical bonds, crystalline and non-crystalline materials and defects of crystal structures, grain size, strengthening mechanisms, heat treatment of metals with mechanical properties and changes in structure To makee aware of the behavior of materials in engineering applications and select the materials for various engineering applications. To understand the causes behind metal failure and deformation To determine properties of unknown materials and develop an awareness to apply this knowledge in material design 						
Syllabus						
Syllabus Chemical bonds – crystallography- imperfections- crystallization- diffusion- phase diagrams-heat treatment – strengthening mechanisms- hot and cold working – alloying- ferrous and non ferrous alloys- fatigue-creep- basics, need, properties and applications of modern engineering materials. Expected outcome: The students will be able to i. Identify the crystal structures of metallic materials. ii. Analyze the binary phase diagrams of alloys Fe-Fe3C, etc. iii. Correlate the microstructure with properties, processing and performance of metals. iv. Recognize the failure of metals with structural change. v. Select materials for design and construction. vi. Apply core concepts in materials science to solve engineering problems						
Toyt Books		1				
1. Jose S 2. Raght	S and Mathew E V, Metallurgy and Materials Science, P avan V, Material Science and Engineering, Prentice Hall	entagon, 2011 1,2004				
References	Lato,					
 Ande Avne Callis Clark Clark Diete Higgi Higgi Myer Unive Reed Van V http:// 13. http:// 	rson J.C. <i>et.al.</i> , Material Science for Engineers, Chapman r H Sidney, Introduction to Physical Metallurgy, Tata M ster William. D., Material Science and Engineering, John and Varney, Physical metallurgy for Engineers, Van No r George E, Mechanical Metallurgy, Tata McGraw Hill, ns R.A Engineering Metallurgy part - I – ELBS,1998 s Marc and Krishna Kumar Chawla, Mechanical behavio ersity press,2008 Hill E. Robert, Physical metallurgy principles, 4th Edn. Vlack -Elements of Material Science - Addison Wesley, //nptel.ac.in/courses/113106032/1 //www.myopencourses.com/subject/principles-of-physica /ocw.mit.edu/courses/materials-science-and-engineering d- State-chemistry-fall-2010/syllabus/ //www.msm.cam.ac.uk/teaching/partIA.php	n and Hall, 199 cGraw Hill, 20 1 Wiley, 2014 ostrand, 1964 1976 our of material Cengage Lear 1989 al-metallurgy-2	0)09 s, Cambridge ning, 2009 2 <u>duction-</u>			

COURSE PLAN				
Module	Contents	Hours	End Sem. Exam Marks	
Ι	Earlier and present development of atomic structure; attributes of ionization energy and conductivity, electronegativity and alloying; correlation of atomic radius to strength; electron configurations; electronic repulsion Primary bonds: - characteristics of covalent, ionic and metallic bond: attributes of bond energy, cohesive force, density, directional and non-directional and ductility, properties based on atomic bonding:- attributes of deeper, energy well and shallow energy well to melting, temperature, coefficient of thermal expansion - attributes of modulus of elasticity in metal cutting process – Secondary bonds:- classification- hydrogen bond and anomalous behavior of ice float on water, application- atomic mass unit and specific heat, application. (<i>brief review only, no Universityquestions and internal assessment from these portions.</i>)	resent development of atomic structure; attributes of ergy and conductivity, electronegativity and alloying; atomic radius to strength; electron configurations; ulsion Primary bonds: - characteristics of covalent, ttallic bond: attributes of bond energy, cohesive force, ional and non-directional and ductility, properties based ding:- attributes of deeper, energy well and shallow to melting, temperature, coefficient of thermal expansion f modulus of elasticity in metal cutting process – ds:- classification- hydrogen bond and anomalous 		
	Crystallography:- Crystal, space lattice, unit cell- BCC, FCC, HCP structures - short and long range order – effects of crystalline and amorphous structure on mechanical properties.	1		
	Coordination number and radius ratio; theoretical density; simple problems - Polymorphism and allotropy.	1		
	Miller Indices: - crystal plane and direction (brief review) - Attributes of miller indices for slip system, brittleness of BCC, HCP and ductility of FCC - Modes of plastic deformation: - Slip and twinning.	1		
	Schmid's law, equation, critical resolved shear stress, correlation of slip system with plastic deformation in metals and applications	1		
	Mechanism of crystallization: Homogeneous and heterogeneous nuclei formation, under cooling, dendritic growth, grain boundary irregularity.	1		
	Effects of grain size, grain size distribution, grain shape, grain orientation on dislocation/strength and creep resistance - Hall - Petch theory, simple problems	1		
	Classification of crystal imperfections: - types of dislocation – effect of point defects on mechanical properties - forest of dislocation, role of surface defects on crack initiation.	1		
II	Burgers vector –dislocation source, significance of Frank Read source in metals deformation - Correlation of dislocation density with strength and nano concept, applications.	1	15%	
	Significance high and low angle grain boundaries on dislocation – driving force for grain growth and applications during heat treatment.	1		
	Polishing and etching to determine the microstructure and grain size.	1		
	Fundamentals and crystal structure determination by X – ray diffraction, simple problems –SEM and TEM.	1		
	Diffusion in solids, Fick's laws, mechanisms, applications of diffusion in mechanical engineering, simple problems.	1		
FIRST INTERNAL EXAMINATION				

	Phase diagrams: - Limitations of pure metals and need of alloying -		
	classification of alloys, solid solutions, Hume Rothery's rule -	2	
	equilibrium diagram of common types of binary systems: five types.		
	Coring - lever rule and Gibb's phase rule - Reactions: monotectic,	1	
	eutectic, eutectoid, peritectic, peritectoid.		
	Detailed discussion on Iron-Carbon equilibrium diagram with		
ш	amentite special features of martensite transformation bainite	1	
	spheroidite etc		
	Heat treatment: - Definition and necessity - TTT for entectoid iron-		
	carbon alloy. CCT diagram, applications - annealing, normalizing,	1	15%
	hardening, spheroidizing.	-	
	Tempering:- austermpering, martempering and ausforming-	-	
	Comparative study on ductility and strength with structure of pearlite,	1	
	bainite, spherodite, martensite, tempered martensite and ausforming.		
	Hardenability, Jominy end quench test, applications- Surface		
	hardening methods:- no change in surface composition methods :-		
	Flame, induction, laser and electron beam hardening processes-	2	
	change in surface composition methods :carburizing and Nitriding;		
	Types of Strengthening mechanisms: - work hardening equation -		
	precipitation strengthening and over ageing- Dispersion hardening.	1	
	Cold working: Detailed discussion on strain hardening: recovery: re-		
	crystallization, effect of stored energy; re-crystallization temperature	1	-
	- hot working, Bauschinger effect and attributes in metal forming.	-	
	Alloy steels:- Effects of alloying elements on steel: dislocation		
	movement, polymorphic transformation temperature, alpha and		
	beta stabilizers, formation and stability of carbides, grain growth,	1	
	displacement of the eutectoid point, retardation of the	· ·	
	transformation rates, improvement in corrosion resistance, mechanical	0.1	
IV	properties Nielel etc. Characteristic Extension of stall properties		15%
	Nickel steels, Chromium steels etc Ennancement of steel properties	1	
	Vanadium Tungsten Cohalt Silicon Copper and Lead	1	
	High speed steels:- Mo and W types, effect of different alloving		
	elements in HSS	1	
	Cast irons: Classifications; grey, white, malleable and spheroidal		
	graphite cast iron etc, composition, Microstructure, properties and	1	
	applications.		
	Principal Non ferrous Alloys: - Aluminum, Copper, Magnesium,		
	Nickel, study of composition, properties, applications, reference shall	1	
	be made to the phase diagrams whenever necessary.		
	ECUID INTEKNAL EXAMINATION Fatigue: _ Stress cycles Primary and secondary stress rejears		
	Characteristics of fatigue failure, fatigue tests, S-N curve	1	
v	Factors affecting fatigue strength: stress concentration. size effect.		20%
	surface roughness, change in surface properties, surface residual	1	
	stress.		

	Ways to improve fatigue life – effect of temperature on fatigue, thermal fatigue and its applications in metal cutting	1			
	Fracture: – Brittle and ductile fracture – Griffith theory of brittle fracture – Stress concentration, stress raiser – Effect of plastic deformation on crack propagation.				
	Transgranular, intergranular fracture - Effect of impact loading on ductile material and its application in forging, applications - Mechanism of fatigue failure.	1			
	Structural features of fatigue: - crack initiation, growth, propagation - Fracture toughness (definition only) – Ductile to brittle transition temperature (DBTT) in steels and structural changes during DBTT, applications.	1			
	Creep: - Creep curves – creep tests - Structural change: deformation by slip, sub-grain formation, grain boundary sliding	1			
	Mechanism of creep deformation - threshold for creep, prevention against creep - Super plasticity: need and applications	1			
VI	Composites:- Need of development of composites - geometrical and spatial Characteristics of particles – classification - fiber phase: - characteristics, classifications -composites:- Need of development of composites -	2	20%		
	Modern engineering materials: - only fundamentals, need, properties and applications of, intermetallics, maraging steel, super alloys, Titanium – introduction to nuclear materials, smart materials and bio materials.	2			
	Ceramics:-coordination number and radius ratios- AX, AmXp, AmBmXp type structures – applications.	1			

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN

Maximum Marks: 100

Exam Duration: 3 Hrs

PART A

4 Questions uniformly covering modules 1 and 2. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

2014

PART B

4 Questions uniformly covering modules 3 and 4. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART C

6 Questions uniformly covering modules 5 and 6. Each question carries 10 marks. Students will have to answer any four questions out of six. (4X10=40 marks)

Cours	e Course Name	L-T-P –	Yea	ar of
code		Credits	Intro	luction
ME31	I MANUFACTURING PROCESSES	3-0-0-3	20)16
Prerequ				
Course	Ubjectives	and to susses	1:66	famma
• 1	f metals/allows/composites	ised to create	ameren	l Iorins
Syllabu				
Introduc	tion to material casting processes - welding process an	d the physics	s of we	lding -
mathem	atical/ physical description of forming processes – rolling an	d types $-$ forg	ing proc	cesses –
advance	d manufacturing – non-traditional machining – design for ma	nufacturing	01	
Expect	ed outcome.	AL		
•]	The students will become aware of the types of processes use	d for the manu	ifacturin	g the
F	arts of automobile.	Y.		
Text B	ooks:			
1. H	Ielmi A Youssef, Hassan A El-Hofy and Mahmoud H Ahme	d, Manufactur	ring	
	echnology (materials, processes and equipments), CRC Pre	ss, 2017	7	2012
2. f	calapakitan and Schmid, Manufacturing Engineering and Te	chnology, Pea	rson, /e	, 2013
	nces: Jine and Rosenthal Principles of Metal Casting Tata McCu	ow Hill India	1005	
	R Beeley Foundry Technology Butterworths Publication	aw 1111 1101a, 1972	1995	
2. 1	Course Plan	1772		
				Fnd
Module	Contents		Hours	Sem. Exam Marks
	Casting of metallic materials – introduction – expendent	table mold		WIAI KS
	casting processes – sand casting shell vacuum slu	ry plaster		
	and ceramic molding expandable pattern casting –	permanent		
т	mold castings $-$ die and centrifugal casting $-$ meltin	g furnaces	7	15%
1	- cupolas and crucible furnace -cleaning and fu	nishing of	,	1370
	- cupotas and crucible furnace -cleaning and finishing of			
	of defects	inspection		
	Bulk forming of metallic metarials Classification	Forging		
	processes open dia close dia special forging p	= Forging		
	forging againment and defeate	IUCESSES -		
	Polling processes flat sociar tube and spec	ial rolling	7	150/
11	Ronnig processes – nat, section, tube, and spec	fication	/	15%
	processes and forming defects – Extrusion – class.	meanon –		
	Drowing red wire and tube classification and dra	wing dia		
	Drawing – rod, wire and tube – classification and dra	wing die		
	FIRST INTERNAL EXAMINATION	1		
	Sheet metal forming processes - Classification -	- Shearing		
	processes and mechanism - Bending processes - pa	rameters –		
III	springback and residual stresses - bending equipmer	nt – stretch	8	15%
	forming - Deep drawing - blank holding pressure	e, ironing,		
	deep drawing force, redrawing – hydroforming –	spinning –		

	conventional, flow tunneling and tube spinning.			
IV	Joining processes – Fusion welding – gas, thermit, electric arc, resistance and high energy beam welding – Solid state welding – cold, diffusion, explosion, forge, friction, hot pressure, roll, and ultrasonic welding – Solid-liquid state welding – brazing, soldering and adhesive bonding – welding of plastics – metallurgy of welded joints – welding defects – quality control – destructive and non-destructive tests – mechanical joining.	8	15%	
	SECOND INTERNAL EXAMINATION		T	
V	Non-traditional machining – Jet machining – abrasive, water jet, and abrasive water jet – ultrasonic machining – USM equipment and process capabilities – Chemical milling & photochemical machining - ECM – elements, equipment and process capabilities – electrochemical grinding – EDM – sinking, milling and wire cutting – EBM – LBM – plasma arc cutting	8	20%	
VI	Advanced manufacturing techniques – near net shape manufacturing – metal injection molding and rapid prototyping – microfabrication technology – microcutting, microfinishing, and nonconventional micromachining – application of nano technology – sustainable and green manufacturing. Manufacturing process capabilities – process selection factors – process information maps – ranking strategy – design for manufacturing – casting, sheet metal forming, die forging, welding, and assembly.	7	20%	
	END SEMESTER EXAM			

QUESTION PAPER PATTERN

Maximum Marks : 100

Exam Duration: 3 Hrs

PART A

4 Questions uniformly covering modules 1 and 2. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART B

4 Questions uniformly covering modules 3 and 4. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART C

6 Questions uniformly covering modules 5 and 6. Each question carries 10 marks. Students will have to answer any four questions out of six. (4X10=40 marks)

Course code.	Course Name	L-T-P - Credits	Y Intr	ear of
EE31	ELECTRICAL DRIVES & CONTROL FOR AUTOMATION	3-0-0-3		2016
Prerequisi	te : Nil			
Course O	bjectives			
1. To	understand the basic concepts of different types of electrical	machine	s and the	eir
pe	rformance.	1. 1. 1		
2. To	know the different methods of starting D.C motors and induc	tion mot	tors.	
3. To	introduce the controllers for automation	a 1		
		A		
Syllabus	I L CI II NO LO CIC	V VA-		
DC Mac	hines, transformers, three phase induction motor, single phase	e inducti	on moto	r, stepper
motor, co	ontrollers for automation.			, II
Expecte	d outcome .			
The stude	nts will be able to			
1. Se	lect a drive for a particular application based on power rating.			
2. Se	lect a drive based on mechanical characteristics for a particula	r drive a	pplicatio	on.
3. Di	scuss the controllers used for automation			
Text Bo	oks:			
1. Ko	othari D. P. and I. J. Nagrath, Electrical Machines, Tata McGra	aw Hill,	2004.	
2. Na	grath .I.J. & Kothari .D.P, Electrical Machines, Tata McGraw	-Hill, 19	998	
3. Ri	chard Crowder, Electrical Drives and Electromechanical syste	ms, Else	vier, 201	13
4. M	ehta V. K. and R. Mehta, Principles of Electrical and Electron	ics, S. Cl	hand & O	Company
Lt	d., 1996.			
5. Th	eraja B. L. and A. K. Theraja, A Text Book of Electrical Tech	nology,	S. Chan	d &
Co	ompany Ltd., 2008.			
6. Ve	edam Subrahmaniam, Electric Drives (concepts and application	ns), Tata	McGrav	v- Hill,
20	01			
Referen	ces:			
1. H.	Partab, Art and Science and Utilisation of electrical energy, D	hanpat F	Rai and S	ons, 1994
2. M	D.Singh, K. B. Khanchandani, Power Electronics, Tata McG	raw-Hill	, 1998	
3. Pi	lai.S,K A first course on Electric drives, Wiley Eastern Limite	ed, 1998		
	Course Plan			
	2014			Sem.
Module	Contents		Hours	Exam
	DC Machines principle of operation amf equation type	of		Marks
	excitations Separately excited shunt and series excited	DC		
Ι	generators, compound generators, General idea of armature rea	ction.	6	15%
	OCC and load characteristics - simple numerical problems.	,		
	Principles of DC motors-torque and speed equations-torque	speed		
	characteristics- variations of speed, torque and power with	motor		
II	current. Applications of dc shunt series and compound m	otors.	6	15%
	Principles of starting, losses and efficiency - load test- s	imple		
	numerical problems.			
	FIRST INTERNAL EXAMINATION			
III	Transformers – principles of operations – emf equation- vector		7	15%

	diagrams- losses and efficiency – OC and SC tests. Equivalent circuits-		
	efficiency calculations- maximum efficiency – all day efficiency –		
	simple numerical problems. Auto transformers constant voltage		
	transformer- instrument transformers.		
	Three phase induction motors- slip ring and squirrel cage types-		15%
137	principles of operation – rotating magnetic field- torque slip		
1V	characteristics- no load and blocked rotor tests. Circle diagrams-	7	
	methods of starting – direct online – auto transformer starting		
	SECOND INTERNAL EXAMINATION	4	
	Single phase motors- principle of operation of single phase induction	4	20%
	motor – split phase motor – capacitor start motor- stepper motor-		
	universal motor Synchronous machines types – emf equation of		
V	alternator – regulation of alternator by emf method. Principles of	8	
	operation of synchronous motors- methods of starting- V curves-		
	synchronous condenser		
	Stepper motors: Principle of operation, multistack variable reluctance		20%
	motors, single-stack variable reluctance motors, Hybrid stepper motors,		2070
	Linear stepper motor, comparison, Torque-speed characteristics,		
	control of stepper motors		
VI	Controllers for automation, servo control, Digital controllers,	8	
	Advanced control systems, Digital signal processors, motor controllers,		
	Axis controllers, Machine tool controllers, Programmable Logic		
	Controllers		

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P –	Yea	r of	
code		Credits	Introd	uction	
AU307	VEHICLE BODY ENGINEERING	3-0-0-3	20	16	
Prerequis	site : Nil				
Course O	bjectives				
• To	impart knowledge on the design of vehicle body to give r	naximum cor	nfort for t	the	
pa	ssengers				
• To	o discuss the methods of stream lining vehicle body to min	imize drag	-		
Syllabus Classifica vehicle bo distributio	tion of coach work types, vehicle aerodynamics, vehi ody design terms, vehicle ergonomics, body structure typ on in vehicles.	cle body de es, vehicle st	sign para tability, a	meters, nd load	
Expecte • Th an	d outcome . The students will be able to do vehicle body design giving main d producing minimum drag.	aximum pass	enger con	nfort	
Text Bo	ok:				
1. Gi 2 Sy	les J Pawlowski, Vehicle body engineering Business books dney F Page "Body Engineering" Chapman & Hall Ltd	s limited, 198 London, 1956	19		
Referen	cas.		,		
1. Po 2. Br Lo 3. Di 4. Gi 5. Jo Lo 6. Pa 7. Re	 Pope , "Wind tunnel testing" , John Wiley & Sons , 2nd edition, New York, 1974 Braithwaite, J.B., Vehicle Body building and drawing, Heinemann Educational Books Ltd., London 1977 Dieler Anselm., The passenger car body, SAE International, 2000 Giles, G.J., Body construction and design, Illiffe Books Butterworth & Co., 1971. John Fenton, "Vehicle body layout and analysis", Mechanical Engg. Publication ltd, London. Paul Browne – Auto care manual. 				
	Course Plan		1		
Module	Contents	/	Hours	Sem. Exam Marks	
I	Classification of coachwork type: styling forms, coach and bus layout of cars, buses and coach with different seating and loadi commercial vehicle types, Vans and Pickups. Terms used in bo construction - Angle of approach, Angle of departure, Ground Cross bearers, Floor longitudes, posts, seat rail, waist rail, car stick, Roof longitude, Rub rail, skirt rail, truss panel, wheel arc wheel arch, post diagonals, gussets. Basic dimension: Regulations as per ARAI, driver's seat, passe visibility.	body style, ng capacity, ody building d clearance, nt rail, Roof ch structure, engers seat,	7	15%	
Π	Aerodynamics: Basics, Vehicle drag and types, Various types and moments, effects of forces and moments, various body op techniques for minimum drag, Principle of wind tunnel techno visualization techniques, tests with scale models, aerodynamic heavy vehicles Interior Ergonomics: Introduction, ergonomi design, Seating dimensions ,seat comfort, suspension seats, s seating, back passion reducers, dash board instruments, displays, commercial vehicle cabin ergonomics, mechanica layout, goods vehicle layout.	s of forces otimization ology, flow e study for ics system split frame electronic il package	7	15%	

	FIRST INTERNAL EXAMINATION		
ш	Vehicle Body Materials: Aluminium alloys, Steel, alloy steels, plastics, Metal matrix composites, structural timbers - properties, glass reinforced plastics and high strength composites, thermoplastics, ABS and styrenes, load bearing plastics, semi rigid PUR foams and sandwich panel construction. Paints adhesives and their properties, corrosion and their prevention	7	15%
IV	Load distribution: Type of body structures, Vehicle body stress analysis, vehicle weight distribution, Calculation for static, symmetrical, longitudinal & side loads, stress analysis of bus body structure under bending and torsion. Vehicle Stability: Introduction, Longitudinal, lateral stability, vehicle on a curvilinear path, critical speed for toppling and skidding. Effect of operating factors on lateral stability, steering geometry and stabilization of steerable wheels, mass distribution and engine location on stability	7	15%
	SECOND INTERNAL EXAMINATION		1
V	Noise and vibration: Noise characteristics, Sources of noise, noise level measurement techniques, Body structural vibrations, chassis bearing vibration, designing against fatigue, methods of noise suppression Safety: Impact protection basics, Physics of impact between deformable bodies, Design for crash worthiness, occupant and cargo restraint, passive restraint systems, side impact analysis, bumper system, energy absorbent foams, laws of mechanisms applied to safety.	7	20%
VI	Introduction to CFD technology, fluidic design considerations, effect of air dams on front bumpers, effect of projected accessories on body, wind tunnel testing of car body, parameters considered for wind tunnel testing, introduction to software simulation of car body structures. Visibility, regulations, drivers visibility, methods of improving visibility, Window winding and seat adjustment mechanisms	7	20%

END SEMESTER EXAM

Question Paper Pattern

Estro

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P –	Y Inte	ear of			
AU361	ALTERNATIVE FUELS AND ENERGY	3-0-0-3	Intr	2016			
neeur	SOURCES	0000		-010			
Prerequisite : Nil							
Course Objectives							
• To	impart the basic concepts of energy and its sources.						
• To	develop a clear understanding about the alternative fuels for	I.C engines	5.				
Syllabus	API ARIVII KAI	$\Delta \Lambda A$					
Introducti	on- Types of energy sources, Alcohols for SI and CI Engin	les- Vegeta	ble oil	as diesel			
fuels, Hyd	rogen energy & Fuel Cells, CNG- LNG- Biogas- Wind Ener	gy, Solar po	ower- C	Collection			
and storag	e of solar energy, Electric vehicles- Design considerations-	limitations	s- opp	ortunities			
for improv	/ement	1					
Expected	l outcome.						
i.	The students will understand the energy conversion, u	tilization a	and sto	brage for			
	renewable technologies.						
11.	The students will be familiar with the potential of using ren	ewable ener	gy tecl	inologies			
	as a complement to the extent possible, replacement for con the possibility of combining renewable and non renewal	lventional t	toohno	Jogies and			
	hybrid systems	he energy	techno	logies in			
iii.	To understand the environmental aspects of energy usage ar	nd conversion	on				
Text Bo							
1. Jac	ex Erjavec, Alternative fuels, Cengage publications						
2. IVI	unui & Sharma, IC engines, Dhanpat Rai publications						
Referen	ces:						
1. T.	K. Garrett, Automotive fuels system, SAE INC, Warrendale,	1 <mark>9</mark> 91					
2. Ke	eith Owen & Trevor Colley, Automotive Fuels reference boo	ok, SAE					
3. Rt	chard L. Bechtold, Alternate fuels guide book, SAE	.1					
4. En 5 No	ergy research group, Alternate liquid fuels, Willey Eastern L	ta					
5. Na	D Bai Solar energy utilization Khanna Publishers 2004						
0. 0. 7 Dr	N K Giri Automobile technology Khanna publications						
7. DI							
	Course Plan			Corre			
Modulo	Contents	Г	lours	Sem Exom			
Moune	Contents	1	louis	Marks			
	FINE			wiai Ko			
	Introduction	. 1					
	Types of energy sources - conventional and non-conve	ntional					
I	fuels need for alternative energy sources	mobile	7	10%			
-	IC engine fuel ratings- octane number cetane number	diesel					
	index fuel properties additives fuel quality aspects rela	ted to					
	emissions. Implementation barriers for alternative fuels						
	Bio fuels for SI and CI Engines						
тт	Alcohols for SI engines- manufacture of methanol, manu	facture	7	200/			
11	of ethanol, comparison of properties of alcohols and gasolin	e as SI	/	20%			
	engine fuels, engine performance with pure alcohols, a	alcohol					

r			
	gasoline fuel blends-gasohol- E85.		
	Vegetable oils as diesel fuels - vegetable oils as diesel fuels,		
	straight vegetable oils and bio-diesels, performance properties of		
	engines with bio-diesel, Ethers of alcohols.		
	FIRST INTERNAL EXAMINATION		
	Hydrogen energy & Fuel Cells		
	Properties of hydrogen, sources of hydrogen, production of		
	hydrogen, electrolysis of water, thermal decomposition of water,		
	thermo – chemical production and biochemical production,	7	2004
111	storage and methods, applications to engines, modifications	V1'	20%
	necessary, hazards and safety systems for hydrogen, performance	1	
	characteristics in engines. Emissions from hydrogen fuel engines.		
	Fuel cell - working, advantages and limitations.	Act	
	CNG, LNG, Biogas, Wind Energy Gaseous fuels: Availability of		
	CNG, LNG, properties, modification required to use CNG in		
	engines. Production of Biogas, application of bio-gas as a single	-	1.50/
IV	fuel and dual fuel.	/	15%
	Basics of Wind Energy, current and future technologies; Wind		
	turbine and its components.		
	SECOND INTERNAL EXAMINATION		
	Solar power		
	Collection and storage of solar energy, collection devices, flat		
V	plate collectors, concentrating type collectors, storage methods,	7	15%
	principle and working of photovoltaic conversion, application to		
	automobiles.		
	Electric vehicles		
X 7 X	Design considerations, limitations, opportunities for improvement,	7	2004
VI	applicability of electric cars, cost of electric cars, types of motors.	/	20%
	Batteries- types, capacities, limitations, future possibilities.		
	END SEMESTER EXAM		

Maximum marks: 100

The question paper shall consist of three parts

Time: 3 hours

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Cours	se Course Name	L-T-P –	Yea	r of		
code		Credits	Introd	uction		
AU36	3 PLASTICS AND COMPOSITES IN	3-0-0-3	20	16		
	AUTOMOBILE					
Prerequisite : Nil						
Course	Objectives					
• [To introduce different types of plastics and composite materials	, their prop	erties and			
8	pplications.					
Syllabu	APT ABDUL NAL	AIV				
Introduc	tion to plastics-thermoplastics and thermosets-Processing	of Plast	ics-Calend	lering		
Thermo	forming-Fundamentals of composites-Polymer matrix	composite	s-Metal	matrix		
composi	tes-Ceramic matrix composites	2				
Evnect	ed outcome	0				
	The students will become aware of different, types of plastics a	nd compos	ites used i	n the		
I	nanufacture of automobile components.	ild compos		ii the		
Text B	ooks:					
1. (Chawla K.K., Composite materials, Springer – Verlag, 1987					
2. I	Mathews F.L. and Rawlings R.D., Composite materials: Engine	ering and S	cience,			
(Chapman and Hall, London, England, 1st edition, 1994.	Ũ				
Referen	ces:					
1. I	Blow C.M and Hepburn C, rubber Technology and Manufacture	e, 1982				
2. (Clyne T.W. and Withers P.J., Introduction to Metal Matrix Con	nposites, Ca	mbridge			
τ	Jniversity Press, 1993.					
3. I	Freakly P.K and Payne A.R, Theory and Practice of engineerin	g with rubb	er, Applie	ed		
5	cience publishers					
4. I	Iobel E.F, rubber spring Design					
5. I	Raymond A Higgins, Materials for Engineers and Technicians,	Fourth edit	ion, Newr	nes an		
1	mprint of Elseviers					
6. 5	Sharma S.C., Composite materials, Narosa Publications, 2000.	1000				
7. 2	Strong A.B., Fundamentals of Composite Manufacturing, SME,	, 1989.				
	Course Plan					
				End		
		1		Sem.		
Module	Contents	/	Hours	Exam		
	2014			Marks		
	Application of notional mobile of the literation					
	Application of natural rubber, synthetic rubber and plantamentiles	astics in				
Ι	automobiles. Introduction to plastics. Structure	e alla	7	15%		
	materials Classification of plastic thermoplastics and thermo	sets				
	Processing of Plastics: Extrusion Injection moulding Therm	oforming				
п	Compression moulding Transfer moulding Rubber plasti	c springe	7	15%		
	and its characteristics. Applications of plastics in automobile	interior.	,	1570		
	FIRST INTERNAL EXAMINATION			1		
TTT	Fundamentals of composites: Need for composites, Enhance	cement of	8	150/		
111	properties, Classification of composites, properties relatio	nships of	0	1370		

	polymers and elastomers, resilience, creep, hysteresis, and damping, stability, set and stress relaxation, behavior under dynamic application.		
IV	Polymer matrix composites: Polymer matrix resins, Thermosetting resins, thermoplastic resins, Reinforcement fibres, Various types of fibres. Tyre and tyre manufacture, blending, curing, vulcanization, compounding, composite materials,	8	15%
v	Fluid seals, flexible coupling and hoses, seals for static and dynamic application, effect of heat and oil aging, frictional behaviour, types of couplings, selection of couplings, torque v/s deflection characteristics, hydraulic hoses- materials and manufacturing.	8	20%
VI composite materials, FRP and GRP, application in automobiles, manufacturing techniques of composite material components		7	20%
	END SEMESTER EXAM		

Time: 3 hours

Maximum marks: 100 The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name L-7	-P –	Y	ear of			
	AUTOMOTIVE POLITITION AND TESTING 3.0		Intr	2016			
Prerequis	ite · Nil	-0-5	· ·	2010			
 To impart the basic concepts of IC Engine pollution and its effects To know about pollution sources and pollution control To discuss methods of measuring automotive pollution 							
Syllabus	APLARINI KALA	M					
Emission pollutant emission -	standards & regulations -Emission measurement and testing proc formation -Formation of HC -Technology for controlling e inspection frequency and roadside inspection	cedures missior	-Mech is -Co	anism of ontrolling			
Expecte	d outcome.						
• Th	e students will know about various emissions of automotive engin ting methods	es and	the em	ission			
			-				
Text Bo 1. As W 2. Pa	Dk: il Faiz, C S Weaver, M P Walsh, Air pollution from motor vehic ashington D C, 1996 ul Degobert, Automobiles and pollution — Editions Technip, 199	les, Th 5	e Woi	ld bank ,			
D.C							
Reference 1 Ion	e Books	c Cont	ol Su	toms 3/0			
I. Jai Pe	arson 2012	s Comi	oi sys	iems, s/e			
2. Sn	ringer and Patterson <i>Engine Emission</i> Plenum Press, 1990						
3. W	M. Crouse and A.L. Anglinm, Automotive emission control	, McC	braw 1	Hill Co.,			
Ne	wYork, 1993						
	Course Plan						
Module	Contents	н	ours	Sem. Exam			
Mount	contents		Juis	Marks			
	Emission standards & regulations – international standards, U	S,					
	European union standards, & Indian standards. Compliance wi	th					
	standards – certification - assembly lane testing – In us	se		15%			
I	surveillance & recall.		7				
-	Emission measurement and testing procedures – light and heavy	y		/-			
	duty vehicles & two wheelers. Crankcase, evaporative, refueling	5					
	and on-road emissions. INDIK analyzers, FID, Chemiluminscence	•					
	analyzers etc	-					
	analyzers etc Mechanism of pollutant formation – formation of NOx & CO	in					
	analyzers etc Mechanism of pollutant formation – formation of NOx & CO SI and CI engines – formation of particles in SI and CI engines	in _					
II	analyzers etc Mechanism of pollutant formation – formation of NOx & CO SI and CI engines – formation of particles in SI and CI engines oxidation of soot – role of soot inhibitors	in _	7	15%			
II	analyzers etc Mechanism of pollutant formation – formation of NOx & CO SI and CI engines – formation of particles in SI and CI engines oxidation of soot – role of soot inhibitors Formation of HC – aldehydes, ketons, alcohols and organic acids	in 	7	15%			
II	analyzers etc Mechanism of pollutant formation – formation of NOx & CO SI and CI engines – formation of particles in SI and CI engines oxidation of soot – role of soot inhibitors Formation of HC – aldehydes, ketons, alcohols and organic acids formation of HC in SI and diesel engines.	in —	7	15%			
II	analyzers etc Mechanism of pollutant formation – formation of NOx & CO SI and CI engines – formation of particles in SI and CI engines oxidation of soot – role of soot inhibitors Formation of HC – aldehydes, ketons, alcohols and organic acids formation of HC in SI and diesel engines. FIRST INTERNAL EXAMINATION	in 	7	15%			
Ш 	analyzers etc Mechanism of pollutant formation – formation of NOx & CO SI and CI engines – formation of particles in SI and CI engines oxidation of soot – role of soot inhibitors Formation of HC – aldehydes, ketons, alcohols and organic acids formation of HC in SI and diesel engines. FIRST INTERNAL EXAMINATION Technology for controlling emissions – Gasoline fueled vehicles A/E notice electronic environ.		7	15%			
II	analyzers etc Mechanism of pollutant formation – formation of NOx & CO SI and CI engines – formation of particles in SI and CI engines oxidation of soot – role of soot inhibitors Formation of HC – aldehydes, ketons, alcohols and organic acids formation of HC in SI and diesel engines. FIRST INTERNAL EXAMINATION Technology for controlling emissions – Gasoline fueled vehicles A/F ratio, electronic control. Catalytic convertors – two way ar three way convertors – catalytic wear and poisoning. Diesed fuel	in 	7 7	15%			

	venicles – engine design – exhaust after treatment – EGR-		
	Crankcase emission and control - evaporative emission and		
	control – fuel dispensing and distribution emissions and control.		
	Emission standards for inspection and maintenance – cost and		
	benefits – emission improvements – impact of tampering – cost		
	effectiveness. Remote sensing of vehicle emissions – evaluation of		
IV	data.	7	15%
	Vehicle replacement and retrofit programs – scrapage and		
	relocation - replacement - retrofit program. Intelligent vehicle-	A	
	highway systems	V1	
SECOND INTERNAL EXAMINATION			
	Controlling emission - inspection procedures for SI engines -	10.00	
	exhaust & evaporative emissions – motorcycle white smoke.	Acre	
v	Institutional setting for inspection and maintenance – centralized	7	20%
	and decentralized I/M – comparison – inspection frequency and		
	roadside inspection		
	Influence of fuel:- Gasoline fuel – density, volatility, octane		
	number, additives, mis-fueling. Diesel fuel – cetane number,		
	sulphur and aromatics, additives – metallic, organic and water.		
VI	Alternative fuels – NG, LPG, Alcohols-methanol and ethanol,	7	20%
	Biodiesels and their blends, Hydrogen, Low and high content		
	oxygenated fuels. Effect of lubricants – influence of large scale		
	use of alternative fuels.		

END SEMESTER EXAM

Question Paper Pattern

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Yea Introd	ar of luction
ME367	Non-Destructive Testing	3-0-0-3	20	16
	Prerequisite : Nil		-	
Course O • • • • • • • • • • • • •	bjectives To introduce the basic principles, techniques, equipment, NDT methods such as Visual, Penetrant Testing, Magner Testing, Radiography, Eddy Current. To enable selection of appropriate NDT methods. To identify advantages and limitations of nondestructive to To make aware the developments and future trends in ND on to NDT- Visual Inspection- Liquid Penetrant In- Ultrasonic Testing- Radiography Testing- Eddy Current outcome e students will be able to differentiate various defect types a thods for the specimen.	application tic Particle esting meth T. nspection- Testing.	is and lim Testing, ods Magnetic e appropri	itations of Ultrasonic c Particle iate NDT
• Ba	dev Raj, Practical Non – Destructive Testing, Narosa Pub	lishing Hou	19 <mark>97, 1</mark> se	
Reference 1. 2.	books Hull B. and V.John, Non-Destructive Testing, Macmillan, Krautkramer, Josef and Hebert Krautkramer, Ultrasonic 7 Verlag, 1990	1988 Testing of 1	Materials,	Springer-
	Course Plan			
Module	Contents		Hours	End Sem. Exam Marks
I	Introduction to NDT, Comparison between destructive Importance of NDT, Scope of NDT, difficulties of ND progress in NDT, economics aspects of NDT. Visual Inspection - tools, applications and lim Fundamentals of visual testing: vision, lighting, material environmental factors.	and NDT, DT, future itations - attributes,	1 1 1 1	15%
	visual perception, direct and indirect methods mirrors, r boroscopes, fibroscopes, closed circuit television, light s special lighting, a systems, computer enhanced system	nagnifiers, ources	1 1 1	
Ш	Liquid Penetrant Inspection: principles, properties req good penetrants and developers - Types of penet developers and advantages and limitations of various methods of technique/ test procedure interpretation and evaluation of penetrant test indicat	uired for a trants and LPI - LPI ions, false	1 1 1 1 1	15%
	indication		1	

	and safety precaution required in LPI, applications, advantages and limitations	1		
	FIRST INTERNAL EXAMINATION		I	
	Magnetic Particle Inspection (MPI)- Principles of MPI, basic	1		
	physics of magnetism, permeability, flux density, cohesive force,			
	magnetizing force, rentivity, residual magnetism	1		
	Methods of magnetization, magnetization techniques such as head	1		
	shot technique, cold shot technique, central conductor testing,			
ш	magnetization using products using yokes	1	15%	
	direct and indirect method of magnetization, continuous testing of	1	10 / 0	
	MPI, residual technique of MPI, system sensitivity, checking	1		
	devices in MPI	1		
	Interpretation of MPL indications, advantage and limitation of			
	MPI.	1		
	Ultrasonic Testing (UT): principle, types of waves, frequency,	1		
	velocity, wavelength, reflection, divergence, attenuation, mode			
	conversion in ultrasonic UT testing methods	1	1 = 0 /	
IV	contact testing and immersion testing, normal beam and straight	1	15%	
	beam testing, angle beam testing, dual crystal probe, ultrasonic	1		
	testing techniques	1		
	resonance testing, through transmission technique, pulse echo	1		
	testing technique, instruments used UT, accessories such as	1		
	transducers, types, frequencies, and sizes commonly used	-	_	
	Reference blocks with artificially created defects, calibration of			
	equipment, Applications, advantages, limitations, A, B and C scan	1		
	- Time of Flight Diffraction (TOFD).			
	SECOND INTERNAL EXAMINATION			
	Radiography Testing (RT): Principle, electromagnetic radiation	1		
	sources: X-ray source, production of X-rays, high energy X-ray	1		
	source, gamma ray source - Properties of X-rays and gamma rays	1	2004	
	Inspection techniques like SWSI, DWSI, DWDI, panoramic	1	20 /0	
V	exposure, real time radiography, films used in industrial	1		
	radiography, types of film, speed of films, qualities of film	-		
	screens used in radiography, quality of a good radiograph, film	1		
	processing, interpretation, evaluation of test results, safety aspects	1		
	required in radiography			
	applications, advantages and limitations of RT	1		
	Eddy Current Testing (ECT) - Principle, physics aspects of ECT	1		
	like conductivity, permeability, resistivity, inductance, inductive	1		
V /1	Field fastor and lift of affast adap affast and affast impedance	1	200/	
V I	plana diagram in brief donth of nonotration of ECT relation	1	20%0	
	between frequency and depth of penetration in ECT.	1		
	autometer and accessories various application of ECT such as	1		
	equipments and accessories, various application of ECT such as	1		

conductivity detection	measurement,	hardness	measurement,	defect	1	
coating thickn eddy current te	ess measureme sting	ent, advanta	iges and limitati	ons of	1	

END SEMESTER UNIVERSITY EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part B

There should be 2 questions each from module III and IV

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part C

There should be 3 questions each from module V and VI Each question carries 10 marks

Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Course code	Course Name	L-T-P- Credits	Year of Introduction				
ME369	Tribology	3-0-0-3	2016				
	Prerequisite : Nil						
Course Objectives							
• To provide broad based understanding of the subject "Tribology" and its technological significance							
• To understand and the effect	d the genesis of friction, the theories/laws of of viscosity	sliding and r	olling friction				
• To learn abou wear problem	it consequences of wear, wear mechanisms,	wear theories	and analysis of				
To learn abou hydrodynami lubrications in	It the principles of lubrication, lubrication re c and the advanced lubrication techniques and n metal working.	gimes, theorind the application	es of tion of				
• To understand knowledge at	d the importance of adhesion property in different bearing materials.	ferent applica	tions and to get				
To understand surface characteria	d the nature of engineering surfaces, their to cterization techniques	pography and	learn about				
Syllabus							
Introduction to Tribolo Like Friction, Wear and measurement of friction Surfaces, surface mo Recording Systems, Ty	gy- Tribology in Design, Tribology in Indu d Lubrication, different types of lubrication n and wear -The Topography of Engineerin dification techniques- Adhesion properti pes of Bearings, Comparison of Sliding and	stry, Tribolo techniques a ng Surface, C es, Adhesio Rolling Cont	gical Parameters and applications, Contact Between n in Magnetic act Bearings.				
Expected Outcome							
The students will be al	ble to						
i. Understand the s	subject 'tribology' and its technological sign	ificance.					
ii. Understanding t	he theories/laws of sliding and rolling friction	n and the effe	ect of viscosity.				
iii. Get basic idea of wear problems	n consequences of wear, wear mechanisms,	wear theories	and analysis of				
iv. Get an exposure	to theories of hydrodynamic and the advance	ed lubricatio	n techniques				
and the applicati	on of lubrications in metal working.		1				
v. Gain overview of different bearing	v. Gain overview of adhesion property in different applications and to get knowledge about different bearing materials						
vi. Get basic idea al	bout the nature of engineering surfaces, their	topography	and learn about				
surface characte	surface characterization techniques.						
Text books							
 Ernest Rabinow. I.M. Hutchings, Heinemann 1907 	icz, Friction and Wear of Materials, John W Tribology: Friction and Wear of Engineerin	iley & sons,1 g Materials, 1	995 Butterworth-				
3. Prasanta Sahoo,	Engineering Tribology, PHI Learning Priva	te Ltd, New I	Delhi, 2011.				

Reference books

- 1. B. Bhushan, Introduction to Tribology, John Wiley & Sons, Inc, New York, 2002
- 2. B.Bhushan, B.K. Gupta, Handbook of tribology: materials, coatings and surface treatments", McGraw-Hill,1997
- 3. Halling J, "Principles of Tribology", McMillan Press Ltd., 1978

Course Plan				
Module	Contents	Hours	End Sem. Exam. Marks	
	Introduction to Tribology- Tribology in Design, Tribology in Industry, Economic Aspects of Tribology	1		
	Tribological Parameters Like Friction, Wear and Lubrication	1		
Ι	The Topography of Engineering Surface, Contact Between Surfaces.	2	15%	
	Types of Bearings, Comparison of Sliding and Rolling Contact Bearings.	2		
	Introduction, Empirical Laws of Friction, Kinds of Friction	1		
	Causes of Friction, Theories of Friction	1	15%	
П	Friction of Metals, Ceramic Materials, Polymers,	1		
	Rolling Friction- Laws of Rolling Friction, Relation Between Temperature and Friction	1	/ 0	
	Stick-Slip, Prevention of Stick-Slip, Consequences of Friction.	1		
	FIRST INTERNAL EXAMINATION			
	Types of Wear, Various Factors Affecting Wear	1		
	Theories of Wear, Wear Mechanisms 2			
тт	Wear Pagime Mans, Alternative Form of Wear Equations	1	15%	
111	Lubricated and Unlubricated Wear of Metals, Materials Used in Different Wear Situations.	2		
	Fundamentals of Viscosity And Viscous Flow	1		
IV	Principle and Application of; Hydrodynamic Lubrication, Elastrodynamic Lubrication, Boundary and Solid Lubrication	2	15%	
11	Types of Lubricants, Properties of Lubricants	1		
	Effect of Speed and Load on Lubrication, Frictional Polymers.	1		
	Lubrication in Metal Working: Rolling, Forging, Drawing and Extrusion.	2		
	SECOND INTERNAL EXAMINATION			
V	Adhesion: Introduction, Adhesion Effect by Surface Tension, Purely Normal Contact and Compression Plus Shear	2	20%	

	Adhesion in Magnetic Recording Systems	1	
	Dependence of Adhesion on Material and Geometric Properties.	1	
	Bearing Materials : Introduction, Rolling Bearing, Fluid Film Lubricated Bearing, Dry Bearing, Bearing Constructions.	3	
	Introduction To Surface Engineering, Concept and Scope of Surface Engineering	1	
V1	Surface Modification – Transformation Hardening, Surface Melting, Thermo chemical Processes	3	
	Surface Coating – Plating and Anoding Processes, Fusion Processes, Vapor Phase Processes.	3	20%
	Selection of Coating For Wear And Corrosion Resistance, Potential Properties and Parameters of Coating.	1	
END SEMESTER EXAMINATION			

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Time: 3 hrs

	Course Name	L-T-P - Credits	Year of Introduction
**341	DESIGN PROJECT	0-1-2-2	2016
	Prerequisite : Ni	 	
Course Objective	2S		
• To underst	and the engineering aspects of design w	ith reference to simple	products
• To foster in	nnovation in design of products, process	ses or systems	
• To develor	b design that add value to products and s	olve technical problems	S
Course Plan		ALAM	-
Study : Take n specialisation, stud strength, material, maintenance, hand group has to prese Design: The proje with detailed desig The design is expen- <i>Note :</i> The one ho project team (not e	ninimum three simple products, pro dy, analyse and present them. The ana , manufacture/construction, quality, rel dling, sustainability, cost etc. whicheven t individually; choosing different prod ect team shall identify an innovative pro gn. At the end, the team has to document ected to concentrate on functionality, des ur/week allotted for tutorial shall be use exceeding four) can be students from dif	cesses or techniques alysis shall be focused liability, aesthetics, erg ver are applicable. Eac lucts, processes or techno t it properly and present sign for strength is not e ed for discussions and p	in the area of on functionality gonomics, safety th student in the hiques. logy and proceed and defend it. expected. resentations. The lesign problem is
multidisciplinary.			6 I
	m 0		
Expected outcor			
Expected outcor The students will b	he . be able to pink inpovatively on the development of cou	monants products proce	SCAS OF
Expected outcor The students will l i. Th	the . be able to hink innovatively on the development of con chnologies in the engineering field	mponents, products, proce	esses or
Expected outcor The students will l i. Th teo ii. An	the . be able to nink innovatively on the development of con chnologies in the engineering field nalyse the problem requirements and arrive	mponents, products, proce workable design solution	esses or
Expected outcor The students will l i. Th tec ii. An	the . be able to hink innovatively on the development of con chnologies in the engineering field halyse the problem requirements and arrive	mponents, products, proce workable design solution	esses or s
Expected outcor The students will l i. Th teo ii. An Reference: Michael I Wiley & S	be able to hink innovatively on the development of con- chnologies in the engineering field halyse the problem requirements and arrive Luchs, Scott Swan, Abbie Griffin, 2015. Sons, Inc	mponents, products, proce workable design solution Design Thinking. 405 p	esses or s pages, John
Expected outcor The students will l i. Th tea ii. An Reference: Michael I Wiley & S Evaluation	be able to hink innovatively on the development of con- chnologies in the engineering field halyse the problem requirements and arrive Luchs, Scott Swan, Abbie Griffin, 2015. Sons, Inc	mponents, products, proce workable design solution Design Thinking. 405	esses or s pages, John
Expected outcor The students will l i. Th tec ii. An Reference: Michael I Wiley & S Evaluation First evaluation (be able to hink innovatively on the development of con- chnologies in the engineering field halyse the problem requirements and arrive Luchs, Scott Swan, Abbie Griffin, 2015. Sons, Inc Immediately after first internal examination	mponents, products, proce workable design solution Design Thinking. 405 p ation) 20 mark	esses or s pages, John
Expected outcor The students will l i. Th tex ii. An Reference: Michael I Wiley & S Evaluation First evaluation (Second evaluatio	be able to hink innovatively on the development of con- chnologies in the engineering field halyse the problem requirements and arrive Luchs, Scott Swan, Abbie Griffin, 2015. Sons, Inc Immediately after first internal examina- on (Immediately after second internal examina- tion of the second internal examina- Second internal examina- tion of the second internal	mponents, products, proce workable design solution Design Thinking. 405 p ation) 20 mark camination) 20 mark	esses or s pages, John
Expected outcor The students will l i. Th teo ii. An Reference: Michael I Wiley & S Evaluation First evaluation (Second evaluation (be able to hink innovatively on the development of con- chnologies in the engineering field halyse the problem requirements and arrive Luchs, Scott Swan, Abbie Griffin, 2015. Sons, Inc Immediately after first internal examina- on (Immediately after second internal examina- (Last week of the semester)	mponents, products, processor workable design solution Design Thinking. 405 p ation) 20 mark camination) 20 mark 60 mark	pages, John

Course code	Course Name	L-T-P - Credits	Year of	
			Introduction	
**352	Comprehensive Examination	0-1-1-2	2016	
Prerequisite : Nil				

Course Objectives

- To assess the comprehensive knowledge gained in basic courses relevant to the branch of study
- To comprehend the questions asked and answer them with confidence.

Assessment

Oral examination – To be conducted weekly during the slot allotted for the course in the curriculum (@ three students/hour) – 50 marks

Written examination - To be conducted by the Dept. immediately after the second internal examination– common to all students of the same branch – objective type (1 hour duration)– 50 multiple choice questions (4 choices) of 1 mark each covering all the courses up to and including semester V – no negative marks – 50 marks.

Note: Both oral and written examinations are mandatory. But separate minimum marks is not insisted for pass. If a students does not complete any of the two assessments, grade I shall be awarded and the final grade shall be given only after the completion of both the assessments. The two hours allotted for the course may be used by the students for library reading and for oral assessment.

Expected outcome.

• The students will be confident in discussing the fundamental aspects of any engineering problem/situation and give answers in dealing with them

Course code	Course Name	L-T-P - Credits	Year of Introduction		
**451	Seminar and Project Preliminary	0-1-4-2	2016		
	Prereguisite : Nil				
Course Object	ives				
To deve	lop skills in doing literature survey, techn	ical presentation and rep	port preparation.		
• To enab	ble project identification and execution of t	oreliminary works on fi	nal semester		
project					
Course Plan		CALANA			
Seminar: Each	student shall identify a topic of current re	elevance in his/her brand	ch of engineering,		
get approval of	f faculty concerned, collect sufficient lite	erature on the topic, stu	dy it thoroughly,		
prepare own re	port and present in the class.	UIGAL			
Project prelim	inary:	TTV			
Identify suitabl	e project relevant to the branch of study.	Form project team (n	ot exceeding four		
students). The s	students can do the project individually al	so. Identify a project s	upervisor. Present		
the project pro	poposal before the assessment board (ex	cluding the external e	xpert) and get it		
approved by the	e board.				
The preliminar	y work to be completed: (1) Literature s	survey (2) Formulation	of objectives (3)		
Formulation of	of proliminary report	nulation of work plan (5) Seeking lunds		
(0) Fleparation	or preliminary report	h comostor by the como	project team		
Expected out	como	ii semester by the same			
The students w	till be able to				
i Analyse	a current topic of professional interest an	d present it before an au	dience		
ii. Identify	an engineering problem, analyse it and p	ropose a work plan to se	olve it.		
	an engineering proceeni, anaryse is and p				
Evaluation					
Seminar	: 50 marks				
(Distribution of	of marks for the seminar is as follows: i. P.	resentation : 40% ii. A	bility to answer		
questions : 30	% & iii. Report : 30%)				
Project prelim	inary : 50 marks (Progress e	valuation by the superv	isor: 40% and		
progress evalu	lation by the assessment board excluding e	external expert : 60%. T	wo progress		
evaluations, m	nid semester and end semester, are mandat	ory.)			
<i>Note:</i> All eval	uations are mandatory for course completion	on and for awarding the	e final grade.		
		0	U		
	2014				

Course code	Course Nar	ne	Credits	Year of		
**492	PROJEC	Г	6	2016		
• / =	Prere	equisite : Nil	0	-010		
Course Object	tives					
• To appl	ly engineering knowledge in pr	actical problem solv	ving			
To fost	er innovation in design of prod	ucts, processes or sy	vstems			
• To deve	elop creative thinking in findin	g viable solutions to	engineering pro	oblems		
Course Plan In depth study semester	of the topic assigned in the lig	ght of the prelimina	ry report prepar	red in the seventh		
Review and fin	alization of the approach to the	g the investigation	including team	ppic		
Detailed Analy	sis/Modelling/Simulation/Desi	g ne nivesugation,	/Experiment as	needed		
Final developm	nent of product/process, testing	, results, conclusion	s and future dire	ections		
Preparing a par	per for Conference presentation	/Publication in Jour	nals, if possible			
Preparing a rep	port in the standard format for b	being evaluated by the	ne dept. assessm	ent board		
Final project p	presentation and viva voce by the	ne assessment board	including exter	nal expert		
The students w iii.	rill be able to Think innovatively on the devel technologies in the engineering Apply knowledge gained in solv	opment of component field /ing real life engineeri	s, products, proce ng problems	esses or		
Evaluation	lanka 100					
(i) Two progr	ess assessments	20% by the faculty	supervisor(s)			
(ii) Final proj	ect report	30% by the assess	nent board			
(iii) Project pr	resentation and viva voce	50% by the assess	nent board			
<i>Note:</i> All the grade.	<i>Note:</i> All the three evaluations are mandatory for course completion and for awarding the final grade.					
	2	014				

Course	Course Name	L-T-P -	Year of			
ME333	HEAT ENGINES LAB	0-0-3-1	2016			
Prerequisit	Prerequisite : Nil					
Course Obj	Course Objectives To give hands on experience in testing different properties of fuels &					
lubri	cants erform characteristic tests on petrol and diesel engi					
List of Exer	cises/Experiments : etermination of viscosity using Saybolt Viscometer.		1			
2. D 3. D 4. Fu	etermination of viscosity using Redwood Viscometer etermination of Flash point and Fire point using Per rel Injection Pump Testing and Calibration of Fuel 1	er. Isky Marten's Injection pur	s Apparatus.			
4. Pe 5. Pe	rformance Test on Multi cylinder Four Stroke Dies rformance Test on Multi cylinder Four Stroke Petro	el Engine. ol Engine.				
6. Ro 7. M	etardation Test on Twin cylinder Four Stroke Diese orse Test on Multi cylinder Four Stroke Petrol engi	l Engine. ne.				
8. H 9. V	eat Balance Test on Multi cylinder Four Stroke Dies olumetric Efficiency Test on Multi cylinder Four St columetric Efficiency Test on Multi cylinder Four S	sel Engine. roke Diesel E troke Datrol I	Engi <mark>n</mark> e.			
10. v 11. (12. v	Cooling curve Test on Twin cylinder Four Stroke Di Valve Timing on Four stroke Diesel/ Petrol Engine	esel Engine.	Engine.			
13. I 14. I	Determination of calorific value of liquid fuel using Determination of calorific value of gaseous fuel usir	bomb calorir 1g Junker's ca	nete <mark>r</mark> alorimeter			
Note	: Minimum 12 experiments are mandatory					
Expected	outcome:					
i. Test ii. Test	different Properties of fuels and lubricants. petrol and diesel engines to evaluate their performance		1			
List of Equ	ipments Estd.					
SaybRedy	olt viscometer					
• Pens	ky Marten's flash & fire point apparatus					
Fuel Sing	pump testing and calibrating machine le/multicylinder engine (petrol/diesel) for value tim	ing				
• Sing	le/Twin cylinder 4 stroke diesel engine with rope d	rum/electrical	l dynamometer			
Mult Mult	i cylinder petrol engine with eddycurrent/hydraulic	dynamomete	er			
• Bom	b Calorimeter	dynamomete	71			
 Junk 	er's gas calorimeter					

Course	Course Name	L-T-P -	Year of
code		Credits	Introduction
ME335	PRODUCTION ENGINEERING LAB	0-0-3-1	2016
Prerequisite	: Nil		
Course Obje	ectives		
• To gi	ve an idea about different manufacturing pro-	cesses and t	o perform
differ	ent types of tests on various works.		
	A TAY A DATEST TY AND	T DAY &	
List of Exer	vises/Experiments :	A	A
Experiment or	n arc/TIG/MIG welding: -	VI VI	N. T
1. butt w	velding and	A A	
2. lap w	elding	1 ST	0.12
Experiment of	on lathe:-	V	
3. Facin	g,		
4. plain	turning,		
5. step t	urning,		
6. partin	g – groove cutting,		
7. knurl	ing and chamfering		
8. form	turning and taper turning –		
9. Eccer	itric turning.	1	
IU. Meas	urement of flank wear in turning process using too	of makers inf	croscope.
11 single	and multi start external		
11. single	and multi start internal threads		
13 Squar	e and V-threads		
Experiment of	n drilling machine: -		
14. Drilli	ng.		
15. boring	g,		
16. reami	ng		
17. count	er sinking and taping		
Expected ou	tcome:		
• The s	tudents will be able to perform welding and m	achining op	erations in lathe
and d	rilling machine		
List of Equip	oments		
• 3 or 4	jaw Lathe		
• Arc /	TIG / MIG welding machine		
• Drilli	ng machine		
• Threa	a cutting tools.		

Course code	Course Name	L-T-P- Credits	Year of Introduction	
ME302	Heat and Mass Transfer	3-1-0-4	2016	
Prerequis	ites : ME203 Mechanics of fluid			
Course O	bjectives:			
•	 To introduce the various modes of heat transfer and to develop methodologies for solving a wide variety of practical heat transfer problems To provide useful information concerning the performance and design of simple heat transfer systems To introduce mass transfer 			
Syllabı	IS: LECTINO EO GIC	11-		
Modes of Heat Transfer: Conduction: Most general heat conduction equation, One dimensional steady state conduction with and without heat generation, Critical radius of insulation, Elementary ideas of hydrodynamics and thermal boundary layers, Convection heat transfer: Newton's law of cooling, Dimensionless numbers, Dimensional analysis, Problems. Fins: Types of fins : Fin efficiency and effectiveness. Boiling and condensation heat transfer, Introduction to heat pipe. Transient heat conduction. Heat exchangers, LMTD and NTU methods. Radiation: laws of radiation, Electrical analogy, Radiation shields. Mass Transfer :Mass transfer by molecular diffusion. Convective mass transfer.				
Expected	outcome:			
The stude 1. Aj 2. Aj 3. De	nts will be able to oply principles of heat and mass transfer to engineering pro- nalyse and obtain solutions to problems involving various n esign heat transfer systems such as heat exchangers, fins, ra	oblems nodes of hea diation shie	t transfer lds etc	
Text Boo	ks:			
 Sac Lin R.k Nag Kot New 	hdeva R C, Fundamentals of Engineering Heat and Mass T hited, 2009 K.Rajput. Heat and mass transfer, S.Chand& Co.,2015 g P K., Heat and Mass Transfer, McGraw Hill,2011 handaraman, C.P., Fundamentals of Heat and Mass Transfer w Delhi, 2006	ransfer, Nev er, New Age	w Age Science e International,	
Data Bo	ok:			
• H It	leat and Mass Transfer data book: C.P. Kothandaraman, S nternational publishers,2014	. Subraman	iya, New age	
Reference 1. Yui 2. Hol 3. Fra son	es Books: hus A Cengel, Heat Transfer: A Practical Approach, McGr man J P, Heat Transfer, McGraw Hill, 2011 nk P. Incropera and David P. Dewitt, Heat and Mass Tra s, 2014	aw Hill,201 unsfer, John	5 Wiley and	

Course Plan			
Module	Contents	Hours	End Sem. Exam Marks
Ι	Modes of Heat Transfer: Conduction: Fourier law of heat conduction-Thermal conductivity of solids, liquids and gases- Factors affecting thermal conductivity- Most general heat conduction equation in Cartesian, cylindrical and spherical coordinates One dimensional steady state conduction with and without heat generation conduction through plane walls, cylinders and spheres-variable thermal conductivity conduction shape factor- heat transfer through corners and edges. Critical radius of insulation.	12	15%
п	Elementary ideas of hydrodynamics and thermal boundary layers-Thickness of Boundary layer-Displacement, Momentum and Energy thickness (description only). Convection heat transfer: Newton's law of cooling- Laminar and Turbulent flow, Reynolds Number, Critical Reynolds Number, Prandtl Number, Nusselt Number, Grashoff Number and Rayleigh's Number. Dimensional analysis Buckingham's Pi theorem- Application of dimensional analysis to free and forced convection- empirical relations- problems using empirical relations	10	15%
	FIRST INTERNAL EXAMINATIONEXAM		
ш	Transient heat conduction-lumped heat capacity method. Fins: Types of fins - Heat transfer from fins of uniform cross sectional area- Fin efficiency and effectiveness. Boiling and condensation heat transfer(elementary ideas only),Introduction to heat pipe.	8	15%
IV	Combined conduction and convection heat transfer-Overall heat transfer coefficient - Heat exchangers: Types of heat exchangers, AMTD, Fouling factor, Analysis of Heat exchangers- LMTD method, Correction factor, Effectiveness- NTU method, Special type of heat exchangers (condenser and evaporator, simple problems only)	8	15%
	SECOND INTERNAL EXAMINATION		
V	Radiation- Nature of thermal radiation-definitions and concepts- monochromatic and total emissive power-Intensity of radiation- solid angle- absorptivity, reflectivity and transmissivity-Concept of black body- Planck' law- Kirchoff's law- Wein's displacement law-Stefan Boltzmann's law- black, gray and real surfaces-Configuration factor (derivation for simple geometries only)- Electrical analogy- Heat exchange between black/gray surfaces- infinite parallel plates, equal and parallel opposite plates-perpendicular rectangles having common edge- parallel discs (simple problems using charts and tables). Radiation shields(no derivation).	10	20%

VIMass Transfer :Mass transfer by molecular diffusion- Fick's law of diffusion- diffusion coefficient Steady state diffusion of gases and liquids through solid- equimolar diffusion, Isothermal evaporation of water through air- simple problems. Convective mass transfer- Evaluation of mass transfer coefficient- empirical relations- simple problems- analogy between heat and mass transfer.8	20%
---	-----

Use of approved data book permitted

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks

Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P- Credits	Year of Introduction		
ME304	DYNAMICS OF MACHINERY	2-1-0-3	2016		
Prerequisite: M	IE301 Mechanics of Machinery	A CAL	4		
Course Object • To reci • To free • To con	ives: impart knowledge on force analysis of machinery, b procating masses, Gyroscopes, Energy fluctuation in Machi introduce the fundamentals in vibration, vibration anal dom systems. understand the physical significance and design of vibra ditions	alancing of nes. ysis of sin tion system	rotating and gle degree of s with desired		
Syllabus Force analysis Flywheel analy Vibrations – fr vibration.	of machinery - static and dynamic force analysis of vsis - static and dynamic balancing - balancing of rotating ree vibrations of single degree freedom systems, damping	plane moti masses, gyr g, forced vib	on mechanisms. oscopic couples. oration, torsional		
Expected outc The students w 1. Develop th 2. Understan mechanist	 Expected outcome: The students will be able to 1. Develop the design and practical problem solving skills in the area of mechanisms 2. Understand the basics of vibration and apply the concepts in design problems of mechanisms. 				
Text Books: 1. Bal 2. S. 3. V.	llaney P.L. Theory of Machines, Khanna Publishers,1994 S. Rattan, Theory of Machines, Tata McGraw Hill, 2009 P. Singh, Theory of Machines, Dhanpat Rai,2013				
References : 1. E. 2. Gh 200 3. 3. H. 4e, 4e, 5. J. I. 6. W.	Wilson, P. Sadler, Kinematics and Dynamics of Machinery, osh, A. K. Malik, Theory of Mechanisms and Machines, Af 03 Myskza, Machines and Mechanisms Applied Kinematic An 2012 lowenko, Dynamics of Machinery, John Wiley, 1995 E. Shigley, J. J. Uicker, Theory of Machines and Mechanisr T.Thompson, Theory of vibration, Prentice Hall,1997	Pearson Ed filiated East alysis, Pears ns, McGraw	ucation, 2003 West Press, son Education, Hill,1995		

	Course Plan			
Module	Contents	Hours	End Sem. Exam	
	API ABDUU KALA	M	Marks	
Т	Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) - graphical methods	4	150/	
1	Matrix methods - method of virtual work - analysis with sliding and pin friction	3	1370	
II	Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only), equivalent dynamical systems	4	15%	
	Force Analysis of spur- helical - bevel and worm gearing	3		
	FIRST INTERNAL EXAM			
TTT	Flywheel analysis - balancing - static and dynamic balancing - balancing of masses rotating in several planes	4	150/	
111	Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines - balancing of machines	3	15%	
	Gyroscope – gyroscopic couples	3		
IV	Gyroscopic action on vehicles-two wheelers, four wheelers, air planes and ships. Stability of an automobile – stability of a two wheel vehicle –Stabilization of ship.	4	15%	
	SECOND INTERNAL EXAM			
	Introduction to vibrations – free vibrations of single degree freedom systems – energy Method	2		
V	Undamped and damped free vibrations – viscous damping – critical damping - logarithmic decrement - Coulomb damping – harmonically excited vibrations	3	20%	
	Response of an undamped and damped system – beat phenomenon - transmissibility	2		
VI	Whirling of shafts – critical speed - free torsional vibrations – self excitation and stability analysis - vibration control - vibration isolation – vibration absorbers	4	20%	
	Introduction to multi-degree freedom systems - vibration measurement - accelerometer - seismometer - vibration exciters	3		
	END SEMESTER EXAM			
Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

- 21

Note: Each question can have a maximum of four sub questions, if needed.

Cours	e Course Name	L-T-P –	Yea	r of			
code		Credits	Introd	luction			
ME31	4 MACHINE DESIGN - II	3-0-0-3	20	16			
Prerequisite : ME307 Machine design - II							
Course Objectives							
• To introduce the design considerations needed for different types of machine							
components and							
Syllabu	A TAT A DUTAT IT IZA I	A A					
Introduction to design of different types of bearings, clutches, brakes - IC engine parts design -							
Design recommendations							
Expected outcome.							
• The students will become aware of the machine components, forces, stresses affecting							
them and aspects of designing them.							
Text Books:							
1. C.S,Sarma, KamleshPurohit, Design of Machine Elements Prentice Hall of India Ltd							
NewDelhi							
2. M. F. Spotts, T. E. Shoup, Design of Machine Elements, Pearson Education, 8e, 2003							
3. J	. Krisnna Rao, Design of machine Elements volume 2 I K in	ternational I	ublishi	ng			
	IOUSE PVI. LIU New Dellii, 2011 I P. Phandari, Dasign of Machina Elements McGray, Hill Pa	al Company	10.20	16			
H. Doto ho	ok (normitted for reference in the University examination	<u>ok Company</u>	y, 40, 20	10			
1 I	Linggigh Machine Design Data hand book Suma Pr	1) Iblishers R	angalor	≥/ Tata			
1. I N	AcGraw Hill	ionsners, D	angaion	JIata			
Refere							
1 I	Doughtie V L & Vallance A V Design of Machine Elements	McGraw H	Hill Boo	ık			
Company 1964							
2 I. E. Shigley Mechanical Engineering Design McGraw Hill Book Company 5e, 1986							
3. J	uvinall R.C & Marshek K.M., Fundamentals of Machine Com	ponent Des	ign. Joh	n			
V	Viley, 5e, 2011						
4. 5	Siegel, Maleev& Hartman, Mechanical Design of Machines, I	nternational	Book				
(Company.						
	Course Plan	1					
	Latu,			Fnd			
				Sem.			
Module	Contents		Hours	Exam			
				Marks			
	Classification of design - Different phases in design proce	ss - design					
	factors and considerations Engineering materials and their physical						
	properties as applied to design - Selection of materials -	Factors of					
Ι	safety in design – Endurance limit of materials- theories (of failure -	8	15%			
	Guest's theory - Rankine's theory - St. Venant's theory	- Haigh's					
	theory - Von Mises&Hencky theory - shock and impact load	is - fatigue					
	Toading - endurance limit stress- Factors affecting endurance	e 11mit -					
	Factor of safety - creep and thermal stresses	a the heate					
	of rigidity Design of hollow shofts design for static	n me dasis	7	15%			
п	loads repeated loading reversed harding	nu raugue					
	Design of welded joints Depresentation of welds stress	as in fillor					
	and but welds, design for static loads, banding and torsion	in welded					
	and out werds- design for static loads - bending and torsion						

	joints- eccentrically loaded welds - design of welds for variable loads.			
FIRST INTERNAL EXAMINATION				
III	Clutches - friction clutches- design considerations-multiple disc clutches-cone clutch- centrifugal clutch Brakes- Classification, internal expanding shoe brake, disc brake Spring- Design of leaf spring, coil spring , torsion bar	6	15%	
IV	Design of bearings - Types - Selection of a bearing type - bearing life - Rolling contact bearings – static and dynamic load capacity - axial and radial loads - selection of bearings - dynamic equivalent load - lubrication and lubricants – viscosity Journal bearings - hydrodynamic theory - design considerations - heat balance - bearing characteristic number - hydrostatic bearings.	6	15%	
SECOND INTERNAL EXAMINATION				
V	Gears- classification- Gear nomenclature - Tooth profiles - Materials of gears - design of spur, helical, bevel gears and worm & worm wheel - Law of gearing - virtual or formative number of teeth- gear tooth failures- Beam strength - Lewis equation- Buckingham's equation for dynamic load	8	20%	
VI	Design of Internal Combustion Engine parts- Piston, Cylinder, Connecting rod, Crank shaft, Flywheel & valves	7	20%	
END SEMESTER EXAM				

QUESTION PAPER PATTERN

Maximum Marks : 100

Exam Duration: 3 Hrs

PART A

3 Questions uniformly covering modules 1 and 2. Each question carries 15 marks. Students will have to answer any two questions out of four. (2X15=30 marks)

PART B

3 Questions uniformly covering modules 3 and 4. Each question carries 15 marks. Students will have to answer any two questions out of four. (2X15=30 marks)

PART C

3 Questions uniformly covering modules 5 and 6. Each question carries 20 marks. Students will have to answer any two questions out of four. (2X20=40 marks)

Note: Each question can have maximum of 4 sub questions, if needed.